放射性活度

放射性活度

目录导航

活度

   活度(activity)也叫 衰变率(decay rate),指样品在单位时间内衰变掉的 原子数,即某 物质的“有效 浓度”,或称为物质的“有效莫尔分率”。

  单位为贝克(Bq)

  1Bq=1次放射性衰变/s

  常用单位还有居里(Ci)

  1Ci=3.7*10^10Bq

  大约相当于1g 226Ra的活度

  计算公式如图

  其中N(t)代表t时刻的原子核数目,λ代表衰变常数

  为使理想溶液(或极稀溶液)的热力学公式适用于真实溶液,用来代替浓度的一种物理量。

  活度概念的引入和发展 活度的概念首先由刘易斯(G.N.Lewis)于1907年提出,迅速被应用于电化学,以测定水溶液中电解质的活度系数。30年代中期奇普曼(J.Chipman)将活度概念引用于冶金熔体,并提出金属溶液中以1%浓度溶液为活度标准态,此建议迅速为冶金物理化学工作者所接受而推广采用。瓦格纳(C.Wagner)于1952年建议Lnγi按麦克劳林(McLaurin)级数展开,奠定了冶金熔体中多组分活度系数计算的基础。50年代中期图克道根(E. T.Turkdogan)对同一浓度法与同一活度法测定fi进行了比较和研究。50年代末期申克(H.Schenck)及其合作者首先导出 e嫶与ε嫶以及e嫶与e嫐准确的相互关系式[即式(16)及(17)]。50~60年代二十年间活度及活度相互作用系数的测定研究工作非常活跃,主要采用化学平衡及溶解度法,已逐步发展自成体系,成为经典的实验方法。60年代末期固体电解质定氧电池开始作为测定黑色及有色金属熔体中氧的活度及相互作用系数的良好手段。70年代,黑色冶金的金属液及熔渣的活度数据已测出不少,但尚不完全。对有色金属、特别对熔锍及熔盐等的活度数据则待做的工作更多。

  活度不能解决冶金熔体的结构问题。它能指出组分在真实溶液与理想溶液中热力学作用上的偏差,但不能提供造成偏差的原因。纵然如此,50~60年代随着活度数据的积累,不少学者指出铁液中某些元素i的ε嫶与组分j 的原子序数有关,特别是以碳饱和的铁液中碳的ε嫨与组分j 的原子序数有明显的周期的线性关系。由于高温实验条件下测定活度数据的困难,长期以来不少学者提出组分相互间的结构模型,借助于统计热力学进行计算,企图导出一系列公式以之对组分的活度系数进行预测,这对某些二元合金取得了一定的成功,但这些半经验公式只适用于某一特殊体系的物质,或某一体系的特殊的浓度范围,迄今尚未能找出适用于不同类型的普遍的合金体系的通用表达式。同样地,对二元系炉渣也有较好的模型,但尚很不成熟,不足以适用于所有不同类型的二元系炉渣。对三元系或多元炉渣的应用则更谈不到了。

  通过浓度坐标的适当转换,对某些二元合金稀溶液的企图得到活度参数与浓度参数线性关系的尝试,也尚未获圆满的成功。

  总之,活度应用于冶金过程,使得冶金反应能定量地进行热力学计算和分析,在阐明多种反应能否选择地进行,在控制调整产物能否达到最大产率,在控制冶炼操作如何在最优化条件下进行等等方面,已经起了并将继续起到应有的作用。冶金溶体(包括固溶体及水溶液)中组分活度的测定,利用活度探索熔体结构,以及从设想的结构预测组分的活度及其他热力学性质等,将仍是今后较长期的较重要的研究课题。

  参考书目

  魏寿昆:《冶金过程热力学》,上海科学技术出版社,上海,1980。

  魏寿昆:《活度在冶金物理化学中的应用》,中国工业出版社,北京,1964。

活度计算

放射性活度图册放射性活度图册(4) 溶液是由两种或两种以上的物质(称为组分)组成的均一相。如果异种质点(原子、分子或离子)间的作用力和同种质点间的作用力相同,则此溶液称为理想溶液,而服从拉乌尔定律,也即溶液中组分i的蒸气压pi与其以摩尔分数表示的浓度Ni成正比,比例常数是纯组分i的蒸气压真实溶液中各组分的质点有的相互吸引,有的有排斥倾向,导致质点间的作用力不同。只有对组分的浓度加以校正,表示蒸气压关系的拉乌尔定律才能适用,也即符合于真实溶液的拉乌尔定律应写为: p=Pa×xa Pa为纯溶剂的蒸气压;xa为溶剂的摩尔分数。

例外

  绝大多数的冶金反应都有溶液(固溶体、冶金熔体及水溶液)参加,而

  

医用活度计

这些溶液经常都不是理想溶液。要进行定量的热力学计算和分析,溶液中各组分的浓度必须代以活度。活度是组分的有效浓度(或称热力学浓度)。组分的浓度必须用一系数校正,方能符合于若干物理化学定律(例如质量作用定律、拉乌尔定律、亨利定律、分配定律等等),此校正系数称为活度系数。

相关百科
返回顶部
产品求购 求购