①、消雷器的顶端带有许多“尖端电极的电离装置”,而避雷针则是一根“金属棒”,顶部没有尖端的电极;
②、消雷器有“地电流收集装置”,它位于地表层内;而避雷针虽也有“接地装置”,但一般都位于地面表层,所以避雷针不一定能完全排除多余的电流。
人们通常以为,安装了避雷针的建筑物,就不会遭受雷击了,其实并不尽然。
目前世界上普遍使用的避雷针,仍然是1749年美国科学家富兰克林发明的。多年来,这种避雷针发挥过不少保护作用。但同时,该避雷针的副作用也很大。
首先,雷击时它把雷电流引入大地的过程中,要产生强大的感应电流,对电子设备的破坏性尤为巨大。全世界每年由此造成的直接经济损失在10亿美元以上,伤亡人数达5万多人。
其次, 避雷针的保护作用是有 选择性的。对 感应雷如对沿着架空导线侵入变压器的高压 电磁波,它是无能为力的。即使是对直击雷的防护,由于避雷针的“尖端引电”作用,而现今建筑多为钢筋水泥结构,避雷针吸引了雷电后,如果接地系统不良(比如接地线断开或接点虚爆等),雷电流不能顺利地向大地泄放,则建筑物钢筋就会带电,甚至高达几万伏,从而发生雷击事故。因此,重要设施(如火药库、油库)及高层建筑的避雷针,每年在雷季到 来之前,应进行接地 电阻的 测量,以保证接地系统良好。
再者,避雷针上的反击过 电压不可忽视。即使避雷针的接地装置电阻很低(总不可能为零),在雷电波的冲击电压作用下,避雷针上总会产生很高的感应 电势。当人或其它 设备与之接近时,这个感应电势就会向人或其它设备放电,这就叫“反击”现象。为了防止避雷针上的反击过电压对人体造成伤害及对设备绝缘损坏,故规程规定设备的接地装置与避雷针的接地装置在土壤中间隙应大于3m,人行道与避雷针的空间距离应大于5m,主 变压器在接地网上的引入点与避雷针的引入点之间的接地线长度不得小于15m。
此外,雷电形态也影响避雷针的保护效能。如球形雷(又称滚雷)常呈飘浮状态,往往不会被避雷针吸引,它常从建筑物高处的孔、洞、窗等隙缝钻入。所以雷雨时高层住宅的门窗最好关闭,电视机等家电免开,以防遭到球形雷伤害。
消雷器是70年代发展起来的新型防雷装置。消雷器是由离子化装置、连接线及接地装置三部分组成(如附图所示),是利用金属针状电极的尖端放电原理设计的。在雷云电场作用下,当尖端场强达到一定值时,周围空气发生游离后,在电场力的作用下离去,而接替它的其它空气分子相继又被游离。如此下去,从金属尖端向周围有离子电流流去。随着电位的升高,离子电流按指数规律增加。当雷电出现在消雷器及被保护设备上空时,消雷器及附近大地均感应出与雷云电荷极性相反的电荷。安有许多针状电极的离子化装置,使大地的大量电荷在雷云电场作用下,由针状电极发射出去,向雷云方向运动,使雷云被中和,雷 电场减弱,从而防止了被保护物遭受雷击。
由上可知,消雷器的功能是使雷电 冲击放电的微秒·千安级瞬变过程转化为秒·安级的缓慢放电过程,因而使被保护物上可能出现的感应过电压降低到无危害的水平,达到“防雷消灾”的目的。
美国佛罗里达州空军武器 系统试验场的365m高的通讯塔位于山峰上,加利福尼亚电视台的46m高的铁塔位于1676m高的高山上,印度麦卡萨海峡东岸石油公司92m高的通讯塔,都使用了消雷器,安装后再未受过雷击。我国昆明太华山气象站海拔469.3m,消雷塔60m高,未装消雷塔前多次遭受雷击。安装消雷塔后未再遭过雷击。贵州贵阳东山是重雷区,在山顶的电视塔上安装消雷器后,也未遭过 雷击。
根据离子化装置上的 金属针状电极的不同,消雷器可分为少长针型和多短针型两大类。我国出产的有导体伞板型和导体阵列型消雷器两大系列。前者主要用于占地一定面积的发电厂、变电站、军火库、气象站、电视塔等高层建筑或重要防雷场所;后者则是用于架空线路的防雷保护。
由于消雷器安全可靠、便于安装,且基本不需维护,接地电阻又无需象避雷针那样要求高(一般小于100Ω即可),因而日益受到用户欢迎。