毕达哥拉斯学派真相(漫画)(4) 毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,万物按照一定的数量比例而构成和谐的秩序;由此他们提出了“美是和谐”的观点,认为音乐的和谐是由高低长短轻重不同的音调按照一定的数量上的比例组成,“音乐是对立因素的和谐的统一,把杂多导致统一,把不协调导致协调。”这是古希腊艺术辩证法思想的萌芽,也包含着艺术中“寓整齐于变化”的普遍原则。
毕达哥拉斯学派认为天体的运行秩序也是一种和谐,各个星球保持着和谐的距离,沿着各自的轨道,以严格固定的速度运行,产生各种和谐的音调和旋律,即所谓“诸天音乐”或“天体音乐”。
毕达哥拉斯学派还认为,外在的艺术的和谐同人的灵魂的内在和谐相合,产生所谓“同声相应”,认为音乐大致有刚柔两种风格,对人的性格和情感产生陶冶和改变,强调音乐的“净化”作用。毕达哥拉斯学派偏重于美的形式的研究,认为一切平面图形中最美的是圆形,一切立体圆形中最美的是球形。据说毕达哥拉斯学派最早发现了所谓“黄金分割”规律,而获得关于比例的形式美的规律。毕达哥拉斯学派的美学观点是客观唯心主义的,对柏拉图、新柏拉图主义及文艺复兴时期的艺术家产生了深远影响。
毕达哥拉斯学派的成员都是贵族,他们反对撒摩斯岛的古希腊民主制。领头人毕达哥拉斯生于撒摩斯岛。毕达哥拉斯年轻时期,游历了很多地方,特别是游访古埃及和古巴伦等地,学习了一些数学知识,大约在公元前530年回国,开始创建学派。
毕达哥拉斯学派的主张和观念曾引起撒摩斯公民的不满,毕达哥拉斯为了避开人们的舆论,只好离开自己出生的本土,逃往希腊的移民区阿佩宁半岛,并定居在克罗托那城,重新建立学派。由于比达哥拉斯参与政治活动,后来被杀害。他的门徒散居到希腊其他学术中心,继续传授他的教诲达200年之久。
毕达哥拉斯学派把数看作是真实物质对象的终极组成部分。数不能离开感觉到的对象而独立存在,他们认为数是宇宙的要素。所以,他们很注意研究数,也就开始研究数的理论,研究数的性质,而注重实际的计算。他们还依据几何和哲学的神秘性来对“数”进行分类,按照几何图形分类,可分成“三角形数”、“正方形数”、“长方形数”、“五角形数”等等。
毕达哥拉斯发现了著名的“勾股定理”,据说,毕达哥拉斯为了庆贺自己的业绩,杀了一百头牛,也正是由于勾股定理的发现,导致无理数的发现,由此产生了第一次数学危机。
毕达哥拉斯学派在对数学的发现中,不断追求“美”的形式。他们认为日、月五星都是球形,浮悬在太空中,这是最完美的立体,而圆是最完美的平面图。就是曾被誉为“巧妙的比例”,并染上各种各样瑰丽诡秘色彩的“黄金分割”也是这个学派首先认识到的。
毕达哥拉斯-不吃豆子的人-漫画(2) 毕氏学派企图用数来解释一切,不仅万物都包含数,而且认为万物就是数。他们发现,数是音乐和谐的基础。当一根琴弦被缩短到原来长度的一半时,拨动琴弦,音调将提高8度;比率为3∶2和4∶3时,相对应的是高5度和高4度的和声。和声就是由这样一些不同的部分组成的整体。他们认为,正是由于各种事物的数值比确定了它们分别是什么,并显示出彼此之间的关系。
毕氏学派在哲学上与印度古代哲学有相类似之处。都是把整数看作是人和物的各种性质的起因,整数不仅从量的方面而且在质方面支配着宇宙万物。他们对数的这种认识和推崇,促使他们热衷于研究和揭示整数的各种复杂性质,以期来左右和改变自己的命运。
他们对整数进行了分类。如整数中包含有奇数、偶数、质数、亲和数及完全数(perfect number,又称“完美数”和“完满数”)等等。
他们注意到整数48可以被2、3、4、6、8、12、16、24、整除,这8个数都是48的因子,这些因子的和是75;奇妙的是75的因子有3、5、15、25,而它们的和又恰好是48。48与75这一对数叫做“半亲和数”。不难验算出140与195也是一对半亲和数。考虑到1是每个整数的因子,把除去整数本身之外的所有因子叫做这个数的“真因子”。如果两个整数,其中每一个数的真因子的和都恰好等于另一个数,那么这两个数,就构成一对“亲和数”。
220与284是毕达哥拉斯最早发现的一对亲和数,同时也是最小的一对亲和数。因为220的真因子是1、2、4、5、10、11、20、22、44、55、110,而它们的和是284。284的真因子是1、2、4、71、142,其和恰好是220。有人曾经把亲和数用于魔术、法术、占星学和占卦上,使它带有迷信和神秘的色彩。如认为若两个人都佩带上分别写着这两个数的护符,就一定保持良好的友谊,这当然是非常滑稽可笑的。
有趣的是,后来人们总保持着对亲和数研究的兴趣。1636年,法国数学家费马发现了第二对亲和数,它们是17962与18416。两年后笛卡儿找出了第三对亲和数。瑞士的大数学家欧拉曾系统地去寻找亲和数,1747年他一下子找出了30对,3年后他又把亲和数增加到了60对。令人惊奇的是,除去220与284之外最小的一对亲和数1184与1210竟然被这些数学大师们漏掉了。它被一个16岁的意大利男孩帕加尼尼在1886年发现。至今,已经知道的亲和数已有1000对以上。
更有趣的是人们还发现了亲和链:
2115324,3317740;
3649556,2797612。
由于第一个数的因子之和是第二个数,第二个数的因子之和是第三个数……第四个数的因子之和又恰好是第一个数,它们是一个四环亲和链。一些构成亲和链的数,只要给出其中的一个,便可以计算出其他的数。如12496与其他四个数构成一个五环亲和链。有计算器的读者不妨试算一下,补上其余的四个数。
其他与占卦臆测有联系的是完全数。完全数的真因子之和是它自己,就好像自己和自己是“一对”亲和数。最小的完全数是6=1+2+3。毕氏信徒们认为,数具有象征性的含义。例如,4是公正或报应的数,表示不偏不倚。上天创造世界,6就是个完全数。整个人类是诺亚方舟上的神灵下凡,这一创造是不完善的,因为8不是完全数,它大于它的真因子和:1+2+4。像4、8这样的数叫做亏数。相反凡小于其因子和的整数叫做盈数。
最小的三个完全数是6,28,496。直到1952年人们才发现12个完全数。欧几里德的《原本》第九卷的最后一个命题是,证明:如果2n-1是一个质数,则2n-1(2n-1)是一个完全数。由这个公式所给出的完全数都是偶数。后来大数学家欧拉证明了每一个偶完全数必定是这种形式的。人们自然会问,是否还有其他的完全数?即有没有奇完全数?但至今还没有人能够回答这个问题。
1952年,借助SWAC数字计算机,又发现了五个完全数:1957年用瑞士的BESK计算机发现了另外一个;后来有人用IBM7090计算机又发现了两个。至今为止已知道的完全数已有27个。毕氏学派是一个带有神秘色彩的宗教性组织,但是他们对于数学的研究确实作出了重大贡献。由于毕达哥拉斯的讲授都是口头的,按照他们的习惯,对于各种发现或发明都不署个人姓名,而是都归功于其尊敬的领导者,所以很难辨别出他们研究的成果究竟是由谁来完成的。毕氏学派后来在政治斗争中遭到失败,毕达哥拉斯逃到塔林敦后,终于还是被杀害。他死后,他的学派的影响却仍然很大,其学派又延续了200年之久。
是公元前六世纪,哲学家克利特人艾皮米尼地斯说的话:“所有克利特人都说谎,他们中间的一个诗人这么说。” 如果这名诗人说的是真的,那么,克利特人就是说谎者,这个诗人也不能排除在外;如果这名诗人说谎,那么克利特人就不是说谎的群体,这个诗人也应该不是说谎者,这和诗人说谎矛盾。这就是悖论。
运动场问题是芝诺提出的四个悖论中的第一个,又称为两分法悖论
其结论为: 运动不可能开始。
其论点为: 因为一运动物体在到达目的地之前,必须先抵达距离目的地之一半的位置。即:若要从A处到达B处,必须先到AB中点C,要到达C,又须先到达AC的中点D。如此继续划分下去,所谓的“一半距离”数值将越来越小。最后“一半距离”几乎可被视为零。这就形成了此一物体若要从A移动到B,必须先停留在A的悖论。这样一来,此物体将永远停留在初始位置(或者说物体初始运动所经过的距离近似0),以至这物体的运动几乎不能开始。
动得最慢的物体不会被动得最快的物体追上。
由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。 因此被追者总是在追赶者前面。
如柏拉图描述, 芝诺说这样的悖论, 是兴之所至的小玩笑.。
首先, 巴门尼德编出这个悖论, 用来嘲笑"数学派"所代表的毕达哥拉斯的"1>0.999..., 1-0.999...>0"思想.
然后, 他又用这个悖论, 嘲笑他的学生芝诺的"1=0.999..., 但1-0.999...>0"思想.
最后, 芝诺用这个悖论, 反过来嘲笑巴门尼德的"1-0.999...=0, 或1-0.999...>0"思想.
首先假设在操场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。
是古希腊数学家芝诺提出的一系列关于运动的不可分性的哲学
悖论中的一个。人们通常把这些悖论称为芝诺悖论。
芝诺提出,由于箭在其飞行过程中的任何瞬间都有一个暂时的位置,所以它在这个位置上和不动没有什么区别。中国古代的名家惠施也提出过,“飞鸟之景,未尝动也”的类似说法。
一支飞行的箭是静止的。
由于每一时刻这只箭都有其确定的位置因而是静止的,因此箭就不能处于运动状态。
芝诺悖论是古希腊数学家芝诺提出的一系列关于运动的不可分性的哲学悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。这些悖论中最著名的两个是:“阿喀琉斯跑不过乌龟”和“飞矢不动”。
两分法悖论
运动是不可能的。
由于运动的物体在到达目的地前必须到达其半路上的点,若假设空间无限可分则有限距离包括无穷多点, 于是运动的物体会在有限时间内经过无限多点。
钱包悖论
克莱特契克在他的书中指明必须限制条件,这才是一场公平的游戏,例如A,B二人对对方穿领带的习惯一无所知等。
他还假定每一个比赛者带有从0到任意数量(比如说一百元)的钱。以此假定构成两人钱数的矩阵,就可看出这个此赛是“对称的”,不会偏向任何一方。但他没有指出两个比赛者的想法错在哪里。A,B二人的想法显然出了问题,但问题到底出在那里?到现在还没有人公布出明确的答案。其实问题就在A,B二人只以“可以赢更多的钱”这点,就做出这场赌博对自己有利的结论,当然是错误的。显然是缺乏思考,对客观事物的复杂程度缺乏认识,才会做出如此乐观的结论。这场赌博对谁有利的考虑谁可以赢得这场赌博。而不是以“可以赢更多的钱”来判断。
若以谁有胜算来判断,必须注意二点:
(一)必须计算期望值。
(二)“钱包里有多少钱”是很随机的。无法有一定的标准。难以论定这场赌博的胜负,但若将“所有人类的钱包里的钱”相加后除以全人类数目,还是可以得出一个平均值. 若钱包里的钱比平均值大,那胜算比较大,反之较小。各国家,各地区人的钱包里的平均值都不一样,全人类太广泛,以国家,地区来分更加有胜算。但就算是费很大力气来得到这平均值,还是很难确定有胜算的。由此可见A,B二人认为这场赌博对自己有利的结论是做得多么轻易,缺乏思考。其实最有胜算的方法是知道对方的钱包理有多少钱。[1]
毕达哥拉斯(PYTHAGORAS ,约BC570-BC495),古希腊数学家、哲学家,生于萨默斯岛,主要在意大利南部的希腊殖民地活动。他相信万物皆数,崇信数字神秘主义,发现了勾股定理等。
毕达哥拉斯(5) 公元前580年,毕达哥拉斯出生在米里都附近的萨摩斯岛(今希腊东部的小岛)爱奥尼亚群岛的主要岛屿城市之一,此时群岛正处于极盛时期,在经济、文化等各方面都远远领先于希腊本土的各个城邦。
毕达哥拉斯的父亲是一个富商,九岁时被父亲送到提尔,在闪族叙利亚学者那里学习,在这里他接触了东方的宗教和文化。以后他又多次随父亲作商务旅行到小亚细亚。
公元前551年,毕达哥拉斯来到米利都、得洛斯等地,拜访了泰勒斯、阿那克西曼德和菲尔库德斯,并成为了他们的学生。在此之前,他已经在萨摩斯的诗人克莱非洛斯那里学习了诗歌和音乐。
公元前550年,30岁的毕达哥拉斯因宣传理性神学,穿东方人服装,蓄上头发从而引起当地人的反感,从此萨摩斯人一直对毕达哥拉斯有成见,认为他标新立异,鼓吹邪说。毕达哥拉斯被迫于公元前535年离家前往埃及,途中他在腓尼基各沿海城市停留,学习当地神话和宗教,并在提尔一神庙中静修。
抵达埃及后,国王阿马西斯推荐他入神庙学习。从公元前535年到公元前525年这十年中,毕达哥拉斯学习了象形文字和埃及神话历史和宗教,并宣传希腊哲学,受到许多希腊人尊敬,有不少人投到他的门下求学。
毕达哥拉斯在49岁时返回家乡萨摩斯,开始讲学并开办学校,但是没有达到他预期的成效。公元前520年左右,为了摆脱当时君主的暴政,他与母亲和唯一的一个门徒离开萨摩斯,移居西西里岛,后来定居在克罗托内。在那里他广收门徒,建立了一个宗教、政治、学术合一的团体。[2]
毕达哥拉斯曾旅居埃及,后来又到各地漫游,很可能还曾去过印度。在他的游历生活中,他受到当地文化的影响,了解到许多神秘的宗教仪式,还熟悉了它们与数的知识及几何规则之间的联系。旅行结束后,他才返回家乡撒摩斯岛。由于政治的原因。他后来迁往位于南意大利的希腊港口克罗内居住。在这里创办了一个研究哲学、数学和自然科学的团体,后来便发展成为一个有秘密仪式和严格戒律的宗教性学派组织。毕氏学派认为,对几何形式和数字关系的沉思能达到精神上的解脱,而音乐却被看作是净化灵魂从而达到解脱的手段。
有许多关于毕达哥拉斯的神奇传说。如,他在同一时间会出现在两个不同的地方,被不同的人看到;还有传说,当他过河时,河神站起身来向他问候:“你好啊,毕达哥拉斯”;还有人说,他的一条腿肚子是金子做的。毕达哥拉斯相信人的灵魂可以转生,有人为了嘲弄他的宗教教义而传言,一次当他看到一只狗正遭人打时,他便说:别打了,我从他的声音中已认出,我朋友的灵魂是附在了这条狗身上了。如果有人要想加入毕氏团体,就必须接受一段时期的考验,经过挑选后才被允许去听坐在帘子后面的毕达哥拉斯的讲授。只有再过若干年后当他们的灵魂因为受音乐的不断熏陶和经历贞洁的生活而变得更加纯净时,才允许见到毕达哥拉斯本人。他们认为,经过纯化并进入和谐及数的神秘境界,可以使灵魂趋近神圣而从轮回转生中得到解脱。
提起“勾股定理”,人们便很容易与毕达哥拉斯联系起来,西方数学界一般把“勾股定理”叫做“毕达哥拉斯定理”。但据本世纪对于在美索不达米亚出土的楔形文字泥板书所进行的研究,人们发现早在毕达哥拉斯以前1000多年的古代巴比伦人就已经知道了这个定理。而且在中国的《周髀算经》中记述了约公元前1000年时,商高对周公姬旦的回答已明确提出“勾三、股四、弦五”。不过“勾股定理”的证明,大概还应当归功于华达哥拉斯。传说,他在得出此定理时曾宰杀了100头牛来祭缪斯女神,以酬谢神灵的启示(缪斯是神话中掌管文艺、科学的女神)。
实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除中国在公元前 1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”
不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。[3]
毕达哥拉斯是科学史上最重要的人物之一,他的思想不仅影响了柏拉图,而且还一直影响到文艺复兴时期的一些哲学家和科学家。毕达哥拉斯曾旅居埃及,后来又到各地漫游,很可能还曾去过印度。在他的游历生活中,他受到当地文化的影响,了解到许多神秘的宗教仪式,还熟悉了它们与数的知识及几何规则之间的联系。旅行结束后,他才返回家乡撒摩斯岛。由于政治的原因。他后来迁往位于南意大利的希腊港口克罗内居住。在这里创办了一个研究哲学、数学和自然科学的团体,后来便发展成为一个有秘密仪式和严格戒律的宗教性学派组织。
鼎盛年约在公元前531年,毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰(一切数均可表成整数或整数之比),使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为人们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接这一悖论直接触犯了毕氏学派的根本信条,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。[4]