钚

中文名
属性 化学元素
发现人 西博格
元素类型 金属元素
命名原理 仿照铀、镎以冥王星命名
原子量 239
目录导航

化学物质

钚(英语:Plutonium ,)原子序数为94,元素符号是Pu,是一种具放射性的超铀元素。半衰期为24万5千年。它属于锕系金属,外表呈银白色,接触空气后容易锈蚀、氧化,在表面生成无光泽的二氧化钚。钚有六种同位素和四种氧化态,易和碳、卤素、氮、硅起化学反应。钚暴露在潮湿的空气中时会产生氧化物和氢化物,其体积最大可膨胀70%,屑状的钚能自燃。它也是一种放射性毒物,会于骨髓中富集。因此,操作、处理钚元素具有一定的危险性。

钚及其同位素因为其放射性而有一定危险性。钚产生的α射线并不会穿透人体的皮肤而进入人体,但钚可能被人体吸入或消化而进入人体从而对内脏造成不利影响。α射线会造成细胞的损伤、染色体的损伤,理论上可能导致癌症发病率的上升。但是这种影响并不会比其它能放出α射线的放射性物质危害更大。相比之下,钚的半衰期很长,使得单位时间里的辐射量相对要小,危害也就更小。在自然界广泛存在的氡的放射危害就要比钚大的多。钚容易在人体的肝脏和骨骼中聚集,但该过程非常缓慢。在20世纪四十年代,美国就有26名工作人员因核武器研究,受到了钚的污染。但是在他们身上并没有出现严重的健康影响,更没有人因此而死亡。

发展历史

钚1934年,恩里科·费米和罗马大学的研究团队发布消息,表示他们发现了元素94。费米将元素取名 “hesperium”,并曾在他1938年的诺贝尔奖演说中提及。然而,他们的研究成果其实是钡、氪等许多其他元素的混合物,但由于当时核分裂尚未发明,这个误会便一直延续。

1940年美国G.T.西博格、E.M.麦克米伦、J.W.肯尼迪和A.C.沃尔用152.4cm回旋加速器加速的16兆电子伏氘核轰击铀时发现钚-238。第二年又发现钚的最重要的同位素钚-239。

格伦·西奥多·西博格格伦·西奥多·西博格1941年3月,科学家团队将报告寄给《物理评论》杂志,但由于发现了新元素的同位素(钚-239)能产生核分裂、往后或许能用于制造原子弹,而在出版前遭到撤回。基于安全因素,报告延迟了一年、直到二次大战结束后才顺利登载。

1945年,西博格比较了镎和钚,认为它们与铀的性质相似,同时又与稀土元素中钐相似,在1945年发表了他编排的元素周期表,建立了与镧系元素相同的锕系元素,把它们一起放置在元素周期表的下方,形式的元素周期表,并留下94号元素以后一系列的空位留待发现。

埃德温·麦克米伦近期将第一个发现的超铀元素以行星海王星(Neptune)命名,并提议以冥王星(Pluto)为系列的下一个元素、即元素94取名。西博格原先属意取名“plutium”,但后来认为它的发音不如“plutonium”。他在一次玩笑中选择“Pu”作为元素符号,却在没有被事先通知的情况下,意外被正式纳入元素周期表。西博格亦曾因为误信他们已经找到周期表中最后一个可能存在的元素,而考虑过“ultimium”或“extremium”等名称。

物质特性

反应1反应1钚和多数金属一样具银灰色外表,又与镍特别相似,但它在氧化后会迅速转为暗灰色(有时呈黄色或橄榄绿)。钚在室温下以α型存在,是元素最普遍的结构型态(同素异形体),质地如铸铁般坚而易脆,但与其他金属制成合金后又变得柔软而富延展性。钚和多数金属不同,它不是热和电的良好导体。它的熔点很低(640 °C),而沸点异常的高(3327 °C)。

钚最普遍释放的游离辐射类型是α粒子发射(即释放出高能的氦原子核)。最典型的一种核子武器核心即是以5公斤(约12.5×10^24个)钚原子构成。由于钚的半衰期为24100年,故其每秒约有11.5×10^12个钚原子产生衰变,发射出5.157MeV的α粒子,相当于9.68瓦特能量。α粒子的减速会释放出热能,使触摸时感觉温暖。

反应2反应2钚在室温时的电阻率比一般金属高很多,而且钚和多数金属相反,其电阻率随温度降低而提高。但近期研究指出,当温度降至100K以下时,钚的电阻率会急遽降低。电阻率由于辐射损伤,会在20K之后逐渐提高,速率因同位素结构而异。

钚具有自发辐射性质,使得晶体结构产生疲劳,即原有秩序的原子排列因为辐射而随时间产生紊乱。然而,当温度上升超过100K时,自发辐射也能导致退火,削弱疲劳现象。

钚和多数金属不同:它的密度在熔化时变大(约2.5%),但液态金属的密度又随温度呈线性下降。另外,接近熔点时,钚的液态金属具有很高的黏性和表面张力(相较于其他金属)。

同素异形体

钚在一般情况下,钚有六种同素异形体,并在高温、限定压力范围下有第七种(zeta, ζ)存在。这些同素异形体的内能相近,但拥有截然不同的密度和晶体结构。因此钚对温度、压力以及化学性质的变化十分敏感,各同素异形体的体积并随相变而具有极大差异性。密度因同素异形体而异,范围自16.00 g/cm^3到19.86 g/cm^3不等。

诸多同素异形体的存在,造成钚的状态易变,使钚元素的制造变得非常困难。例如,α型存在于室温的纯钚中。它和铸铁有许多相似加工后性质,但只要稍微提高温度,便会转成具有可塑性和可锻造性的β型。造成钚复杂相图的背后因素迄今仍未被完整解惑。α型属于低对称性的单斜结构,因此促成它的易碎性、强度、压缩性及低传导性。

核分裂

钚是一种具放射性的锕系金属。它的5f电子是离域和定域之间的过渡界线;钚因此常被认为是最复杂的元素之一。它的同位素钚-239是三个最重要的易裂变同位素之一(另外二者为铀-233和铀-235);钚-241也具有高度易裂变性。所谓的具“易裂变性”(fissile),是指同位素的原子核受到慢中子撞击后,能够产生核分裂,并另释放出足以支持核连锁反应、进一步促使原子核分裂的中子。

环状金属钚重5.3公斤,直径约11厘米,足够制作一枚核弹。它的形状有助于维系临界安全。

同位素

钚有二十种放射性同位素。在自然界中只找到两种钚同位素,一种是从氟碳铈镧矿中找到的微量钚-244,已知钚的同位素中寿命最长的是钚-244,半衰期是8.26×10^7年,它具有足够长的半衰期,可能是地球上原始存在的。另一种是从含铀矿物中找到的钚-239,是铀238吸收自然界里的中子而形成的。其他钚同位素都是通过人工核反应合成的。

其中寿命最长的有钚-244(半衰期为8080万年)、钚-242(半衰期为373300年)及钚-239(半衰期为24110年)。其余的放射性同位素半衰期都低于7000年。钚也有八种亚稳态,但状态并不稳定、半衰期都不超过一秒。

钚的同位素的质量数范围从228到247不等。其中质量数低于钚-244(最稳定的同位素)的同位素,主要的衰变方式是自发裂变和α衰变,衰变产物通常生成铀(92个质子)和镎(93个质子)的同位素(忽略裂变过程产生之二子核的大范围)。质量数大于钚-244的同位素则以β衰变为主要衰变方式,衰变产物多为镅(95个质子)。钚-241是镎衰变系的母同位素,透过β粒子或电子放射衰变成镅-241

                              钚的同位素介绍

同位素 丰度 半衰期 衰变模式 衰变能量MeV 衰变产物
Pu-238 人造 87.74年 自发分裂 204.66 -
Pu-238 人造 - α衰变 5.5 U-234
Pu-239 微量 24100年 自发分裂 207.06 -
Pu-239 微量 - α衰变 5.157 U-235
Pu-240 人造 6500年 自发分裂 205.66 -
Pu-240 人造 - α衰变 5.256 U-236
Pu-241 人造 14年 自发分裂 210.83 -
Pu-241 人造 - β衰变 0.02078 Am-241
Pu-242 人造 373000年 自发分裂 209.47 Kr-92,Ba-141,2个种子
Pu-242 人造 - α衰变 4.984 U-238
Pu-244 微量 8.08×10^7年 α衰变 4.666 U-240

钚金属钚金属钚-238和钚-239是最普遍的人造同位素。钚-239是使用铀(U)和中子(n),并以镎(Np-239)作为中间体,产生β衰变(β)。透过反应1合成。

铀-235裂变中的中子被铀-238原子核俘获、形成铀-239;β衰变将一个中子转变成质子,形成镎-239(半衰期为2.36日),另一次β衰变则形成钚-239。合金管计划的学者曾在1940年推导出此反应式。

钚-238是以氘核(D,重氢的原子核)撞击铀-238。透过反应2合成。

在此反应过程中,一个氘核撞击铀-238,生成两个中子和镎-238;镎-238再发射负β粒子、产生自发衰变,形成钚-238。

衰变热与裂变性质

同位素 丰度 半衰期 衰变模式 衰变能量MeV 衰变产物
Pu-238 人造 87.74年 自发分裂 204.66 -
Pu-238 人造 - α衰变 5.5 U-234
Pu-239 微量 24100年 自发分裂 207.06 -
Pu-239 微量 - α衰变 5.157 U-235
Pu-240 人造 6500年 自发分裂 205.66 -
Pu-240 人造 - α衰变 5.256 U-236
Pu-241 人造 14年 自发分裂 210.83 -
Pu-241 人造 - β衰变 0.02078 Am-241
Pu-242 人造 373000年 自发分裂 209.47 Kr-92,Ba-141,2个种子
Pu-242 人造 - α衰变 4.984 U-238
Pu-244 微量 8.08×10^7年 α衰变 4.666 U-240

混合物与化学性质

钚同位素会发生放射性衰变,释放出衰变热。不同的同位素,单位质量所释出的热量也有所差异。衰变热的单位通常以“瓦特/公斤”或“毫瓦特/公克”计。所有同位素在衰变时都会释放出微弱的伽马射线。

钚同位素的衰变热:

同位素 衰变方式 半衰期 年 衰变热 W/kg 自发裂变中子1/(g·s)
钚-238 α衰变成为铀-234 87.74 560 2600
钚-239 α衰变成为铀-235 24100 1.9 0.022
钚-240 α衰变成为铀-236 6560 6.8 910
钚-241 β衰变成为镅-241 14.4 4.2 0.049
钚-242 α衰变成为铀-238 376000 0.1 1700

主要应用

同位素 衰变方式 半衰期 年 衰变热 W/kg 自发裂变中子1/(g·s)
钚-238 α衰变成为铀-234 87.74 560 2600
钚-239 α衰变成为铀-235 24100 1.9 0.022
钚-240 α衰变成为铀-236 6560 6.8 910
钚-241 β衰变成为镅-241 14.4 4.2 0.049
钚-242 α衰变成为铀-238 376000 0.1 1700

炸弹

室温时,纯钚金属是银灰色、但因氧化而锈蚀。钚在水溶液中形成四种离子氧化态:

Pu(III)—Pu^3+(蓝紫色)

Pu(IV)—Pu^4+(黄棕色)

Pu(V)—PuO^2+(粉红色)

Pu(VI)—PuO2^2+(粉桔色)

Pu(VII)—PuO5^3?(绿色)–七价离子较稀有

钚溶液所呈现的颜色决定于氧化态和酸阴离子的性质。钚的酸阴离子种类影响了错合(原子与中心原子结合)的程度。

核废料

能源与热源

钚因周围压力变化而有六种同素异形体钚因周围压力变化而有六种同素异形体同位素钚-239是核武器中最重要的裂变成份。将钚核置入反射体(质量数大的物质的反射层)中,能使逃逸的中子再反射回弹心,减少中子的损失,进而降低钚达到临界质量的标准量:从原需16公斤的钚,可减少至10公斤,即一个直径约10厘米的球体的量。它的临界质量约仅有铀-235的三分之一。

曼哈顿计划期间制造的“胖子原子弹”型钚弹,为了达到极高的密度而选择使用易爆炸、压缩的钚,再结合中心中子源,以刺激反应进行、提高反应效率。因此,钚弹只需6.2公斤钚便可达到爆炸当量,相当于两万吨的三硝基甲苯(TNT)。在理想假设中,仅仅4公斤的钚原料(甚至更少),只要搭配复杂的装配设计,就可制造出一个原子弹。

钚化合物

一般轻水反应炉所产生的核废料中含有钚,但为钚-242、钚-239和钚-238的混合物。它的浓度不足以制作成核武器,不过可以改用作一次性的混氧燃料(MOX fuel)。在反应炉中以慢速热中子放射线照射钚时,会偶然发生中子俘获,而增加钚-242和钚-240的量。因此反应进行到第二轮之后,钚只能和快中子反应堆反应、消耗。在反应器中没有快中子时(普遍情况下),剩余的钚通常会被遗弃,形成寿命长、处理棘手的核废料成分。

卤化物

同位素钚-238的半衰期为87.74年。它会放出大量热能,伴随着低能的伽马和自发裂变射线/粒子。它是α辐射体,同时具有高辐射能及低穿透性,故仅需低度防护措施。单一纸张就可以抵挡钚-238所放射出的α粒子;同时,每公斤的钚-238可产生约570瓦特热能。

氧化物

碳化物

三氟化钚为蓝紫色固体,熔点为1425±3℃;在没有铝或锆离子存在时,很难溶于酸中。三氟化钚可由钚(IV)的硝酸盐、氧化物、氢氧化物等化合物与无水氟化氢在550~600℃反应制得,也可在含钚(III)的水溶液中加入氟离子沉淀而制得。三氟化钚是还原法制金属钚的原料。

四氟化钚为淡棕色(PuF4·2.5H2O为粉红色),熔点为1037℃,沸点约1277℃;微溶于水,只能溶于含有硼酸、铝(III)或铁(III)的溶液中。四氟化钚可由钚(IV)的氧化物、硝酸盐、草酸盐等化合物在有氧气存在的条件下与无水氟化氢进行高温反应而制得。四氟化钚也是还原法制金属钚的原料。

六氟化钚在-180℃时是白色固体,液态和气态呈棕色到红棕色,熔点为51.59℃,沸点为62.16℃;六氟化钚在热力学上是不稳定的,它是一个很强的氧化剂;能与四氟化铀、二氧化硫、一氧化碳、二氧化碳等反应生成四氟化钚,与潮湿空气或水发生非常激烈的反应;六氟化钚由于α辐解而不断生成四氟化钚。六氟化钚可由二氧化钚或四氟化钚在500~700℃高温下与氟气反应制得。钚(VI)的其他氟化物有PuO2F2、M2PuO2F4·H2O和MPuO2F3·H2O(M为NH4、Na、K等)。

三氯化钚是蓝至绿色的固体,熔点为750℃,沸点为1767℃;易吸潮,易溶于酸和水。三氯化钚可由多种方法制备,通常由二氧化钚与光气在高温下反应而制得。在制备中,大多数其他元素生成挥发性的氯化物,而三氯化钚不挥发,因而钚的纯度较高。三氯化钚也是制备金属钚的一种化合物。

四氯化钚是不稳定化合物,容易分解,不易制得。钚(IV)的其他氯化物有 M2PuCl6(M为Cs、Rb、K、Na等)。

其他已经制得的化合物还有:三溴化钚,熔点约为681℃;三碘化钚,熔点约777℃。

氮化物

二氧化钚是绿棕色到黄棕色的固体,在氦气中的熔点为2280±30℃,蒸气压很低;它的化学惰性很大,在盐酸和硝酸中溶解极慢且不完全,在沸腾的氢溴酸中溶解较快,用硫酸氢钠等熔剂在熔融条件下可溶解二氧化钚;高温下二氧化钚可与氟化氢反应生成三氟化物,有氧气存在时生成四氟化物;高温下与氟作用生成六氟化钚,与锌镁合金反应还原生成金属钚。由于二氧化钚具有高熔点、辐照稳定、同金属互容以及容易制备等特性,是核燃料的一种适用的组成形式。二氧化钚可由金属钚或其化合物(磷酸盐除外)在空气中灼烧制得,也可由含氧化合物在真空或惰性气氛中加热到1000℃而制得。β-三氧化二钚的熔点为2085±25℃;可由二氧化钚与碳在氦中加热到1625℃制得。α-三氧化二钚可由在真空中加热二氧化钚到1650~1800℃ 而制得。α-三氧化二钚由二氧化钚熔化时损失氧而制得,其熔点为2360±20℃。

草酸盐

电解法精炼的武器级钚元素环状物电解法精炼的武器级钚元素环状物已知有二碳化三钚、碳化钚、三碳化二钚和二碳化钚。室温下碳化钚在空气中稳定,但在400℃时则剧烈燃烧;不与冷水作用,但与热水反应生成三价氢氧化物、氢和甲烷的混合物,以及少量的其他碳氢化合物;碳化钚与冷硝酸作用很慢。三碳化二钚的化学性质与碳化钚略有不同,三碳化二钚在高温下的氧化作用及在酸和沸水中的水解作用都比碳化钚弱。钚的碳化物可由金属钚、二氧化钚或氢化钚在高温下与石墨反应而制得。反应条件不同,可以制得不同组分的钚的碳化物。钚的碳化物由于具有较高的导热性、低的蒸气压和较大的钚密度,可以做核反应堆的燃料。

可能危害

已知钚的唯一氮化物为氮化钚。氮化钚在氩气氛中熔点为2450±50℃;遇冷水缓慢水解并生成二氧化钚,氮化钚易溶于无机酸中;与氮化铀能形成一系列固溶体。氮化钚具备核燃料的某些特性,如熔点高、钚密度高和好的导热性,但它的主要缺点是在高温下挥发性较高和易分解。氮化钚可由氢化钚与氮在高于 230℃时反应而制得。

相关事件

钚(III)的草酸盐Pu2(C2O4)3·10H2O和钚(IV)的Pu(C2O4)2·6H2O都是难溶性化合物,随着加热,它们逐渐失去其结晶水,随后分解,最终产物为二氧化钚。钚的草酸盐可由钚的相应氧化态的盐的稀酸溶液与草酸或草酸钠沉淀而制得。

福岛事故

2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,钚在一类致癌物清单中。

日本囤积

漏报事件

福岛第一核电站厂区采集的土壤样本首次检测出放射性元素钚

发出光、热的钚-238球状矿发出光、热的钚-238球状矿2011年3月28日晚,福岛第一核电站厂区采集的土壤样本首次检测出放射性元素钚。这种核裂变产生的强辐射物可能来自受损燃料棒。

2011年3月21日和22日,从福岛第一核电站区域内5处地点采集土壤样本,公司委托外部机构检测,证实这些样本中存在微量的钚—238、钚—239和钚—240。

东电副社长武藤荣:这些钚的浓度属于正常环境下土壤中放射物浓度水平,不会构成威胁,出事机组抢修工作也没有停止。土壤样本中钚的浓度为每公斤0.54贝克勒尔至每公斤0.18贝克勒尔不等。

词条图册

美催日本还300公斤钚 可制50枚核弹

2014年1月,美国正在催日本归还超过300公斤的放射物质钚。美国在冷战期间把这批放射物质交给日本,用于研究,其中大部分为武器级钚。二战时投在长崎市的原子弹就使用钚制作内核部分。[3]

中国外交部发言人华春莹说,中方对日本保有武器级核材料表示严重关切,希望日方就此做出说明。华春莹说,坚持“无核三原则”是日本战后走和平发展道路的重要标志之一,对于维护本地区和平与稳定也有重要意义,希望日本政府继续坚持“无核三原则”。[4]

日本宣布归还美国高浓缩铀与武器级钚

2014年3月,美国白宫在海牙2014年核安全峰会正式开幕前夕抢先在海牙发布消息,称美日两国在日本向美国归还高浓缩铀与武器级钚方面达成一致。

日本向美国归还超过700磅(318公斤)的武器级钚。[5]

相关百科
返回顶部
产品求购 求购