拉普拉斯算子

拉普拉斯算子

目录导航

定义

拉普拉斯算子是 n 维欧几里得空间中的一个二阶微分算子,其定义为对函数 先作梯度运算()后,再作散度运算()的结果。因此如果 是二阶可微的实函数,则 的拉普拉斯算子定义为:

── (1)

的拉普拉斯算子也是笛卡儿坐标系 中的所有非混合二阶偏导数:

── (2)

作为一个二阶微分算子,对于k ≥ 2,拉普拉斯算子把Ck函数映射到Ck-2函数。表达式((1)或(2))定义了一个算子Δ:Ck(Rn)→ Ck-2(Rn),或更一般地,定义了一个算子Δ:Ck(Ω)→ Ck-2(Ω),对于任何开集Ω。

函数的拉普拉斯算子也是该函数的海森矩阵的迹:

坐标表示式

二维空间

其中xy代表x-y平面上的笛卡儿坐标

另外极坐标的表示法为:

三维空间

笛卡儿坐标系下的表示法

圆柱坐标系下的表示法

球坐标系下的表示法

N维空间

在参数方程为(其中以及)的维球坐标系中,拉普拉斯算子为:

其中维球面上的拉普拉斯-贝尔特拉米算子。我们也可以把的项写成

恒等式

如果f和g是两个函数,则它们的乘积的拉普拉斯算子为:

f是径向函数且g是球谐函数,是一个特殊情况。这个情况在许多物理模型中有所出现。的梯度是一个径向向量,而角函数的梯度与径向向量相切,因此:

球谐函数还是球坐标系中的拉普拉斯算子的角部分的特征函数:

因此:

推广

复杂空间上的实值函数

拉普拉斯算子可以用一定的方法推广到非欧几里得空间,这时它就有可能是椭圆型算子,双曲型算子,或超双曲型算子。

在闵可夫斯基空间中,拉普拉斯算子变为达朗贝尔算子:

达朗贝尔算子通常用来表达克莱因-戈尔登方程以及四维波动方程。第四个项前面的符号是负号,而在欧几里德空间中则是正号。因子c是需要的,这是因为时间和空间通常用不同的单位来衡量;如果x方向用寸来衡量,y方向用厘米来衡量,也需要一个类似的因子。

值域为复杂空间

向量值函数的拉普拉斯算子

拉普拉斯算子作用在向量值函数上,其结果被定义为一个向量,这个向量的各个分量分别为向量值函数各个分量的拉普拉斯,即

更一般地,对没有坐标的向量,我们用下面的方式定义(受向量恒等式的启发):

,也可用类似于拉普拉斯-德拉姆算子的方式定义,然后证明“旋度的旋度”向量恒等式.

拉普拉斯-贝尔特拉米算子

拉普拉斯算子也可以推广为定义在黎曼流形上的椭圆型算子,称为拉普拉斯-贝尔特拉米算子。达朗贝尔算子则推广为伪黎曼流形上的双曲型算子。拉普拉斯–贝尔特拉米算子还可以推广为运行于张量场上的算子(也称为拉普拉斯–贝尔特拉米算子)。

另外一种把拉普拉斯算子推广到伪黎曼流形的方法,是通过拉普拉斯–德拉姆算子,它作用在微分形式上。这便可以通过外森比克恒等式来与拉普拉斯–贝尔特拉米算子联系起来。

相关百科
返回顶部
产品求购 求购