虽然无因次量本身没有量纲,但是它也有时被加以无量纲的单位。在分子和分母使用同样的单位(kg/kg或mol/mol),有时可以帮助表达所测量的数值(如质量百分浓度或摩尔份数等)。某些量还可以表示为不同的单位之比,但这两个单位的量纲相同(如光年除以米)。这种做法可以用于计算图表中的斜率,或者进行单位转换。这样的写法并不意味着存在量纲,而只不过是符号表达上的惯例。其他常用的无量纲量有:%(=0.01,百分率)、‰(=0.001,千分率)、ppm(=10−6,百万分率)、ppb(=10−9,十亿分率)、ppt(=10−12,兆分率)以及角度单位(度、弧度、梯度)等等。
两个具有相同量纲之比是没有量纲的,而且无论用什么单位计算,该量还是不变的。例如,如果物体A对物体B施大小为F的作用力,那B也会向A施大小为f的力。两个力的比率F/f永远等于1(见牛顿第三定律),而不取决于测量F和f所用的单位。这是因为物理中一个重要的假设:物理定律是独立于人们选用的单位制的。如果以上的F/f不经常等于1,而在我们从国际单位制转用厘米-克-秒制时改变了的话,这就意味着牛顿第三定律的真伪要看我们选取哪一种单位制,而这就与假设矛盾了。这一假设是白金汉π定理的基础,其表述为:所有物理定律均能以数个无因次量的数学组合(加、减、乘、除等等)写成恒等式。如果无因次量组合后的值在替换所用单位制后改变了的话,那么白金汉π定理就不成立了。
某磁力搅拌器的电功率是被搅拌液体的密度和黏度、搅拌器的直径及搅拌速度的函数。因此这里共有n = 5个变量
这n = 5个变量共由以下k = 3个量纲组成:
长度:L (m)
时间:T (s)
质量:M (kg)
根据该定理,通过组合这n = 5个变量,可以得出p = n − k = 5 − 3 = 2个独立的无因次量。此例中的这两个无因次量分别为:
雷诺数(描述流体流动的无因次量)
功率数(描述搅拌器,同时包含流体密度的无因次量)
一些基本物理常数,如真空中的光速、万有引力常数、普朗克常数和波兹曼常数等等,在适当挑选时间、长度、质量、电荷及温度等单位后,可以归一(数值为1)。这种单位制被称为自然单位制。不过不可能在每一个单位制中都把所有的物理常数归一,剩余的量必须以实验判定。这些剩余的量包括:
a:精细结构常数,电磁交互作用的耦合常数,α ≈ 1/137;
μ或β:质子与电子的不变质量之比,可更广义地指所有基本粒子相对电子的不变质量之比,μ ≈ 1836;
αs:强相互作用的耦合常数;
αG:重力的耦合常数,αG ≈ 1.75×10−45。