变异运算用来模拟生物在自然的遗传环境中由于各种偶然因素引起的基因突变,它以很小的概率随机地改变遗传基因(表示染色体的符号串的某一位)的值。
在染色体以二进制编码的系统中,它随机地将染色体的某一个基因由1变成0,或由0变成1。通过变异操作,可确保群体中遗传基因类型的多样性,以使搜索能在尽可能大的空间中进行,避免丢失在搜索中有用的遗传信息而陷入局部解,获得质量较高的优化解答。
变异可分为基因重组﹑基因突变与染色体畸变。基因重组是指由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。
发生在生物体内基因的交换或重新组合时期。基因突变是指染色体某一位点上发生的改变,又称点突变。发生在生殖细胞中的基因突变所产生的子代将出现遗传性改变。发生在体细胞的基因突变,只在体细胞上发生效应,而在有性生殖的有机体中不会造成遗传后果。染色体畸变包括染色体数目的变化和染色体结构的改变,前者的后果是形成多倍体,后者有缺失、重复、倒立和易位等方式。突变在自然状态下可以产生,也可以人为地实现。前者称为自发突变,后者称为诱发突变。自发突变通常频率很低,每10万个或 1亿个碱基在每一世代才发生一次基因突变。诱发突变是指用诱变剂所产生的人工突变。
诱发突变实验始于1927年,美国遗传学家H.J.马勒用X射线处理果蝇精子,获得比自发突变高9~15倍的突变率。此后,除 X射线外,γ射线、中子流及其他高能射线,5-嗅尿嘧啶、2-氨基嘌呤、亚硝酸等化学物质,以及超高温、超低温,都可被用作诱变剂,以提高突变率。突变的分子基础是核酸分子的变化。基因突变只是一对或几对碱基发生变化。其形式有碱基对的置换,如DNA 分子中A-T碱基对变为T-A碱基对;另一种形式是移码突变。由于 DNA分子中一个或少数几个核苷酸的增加或缺失,使突变之后的全部遗传密码发生位移,变为不是原有的密码子,结果改变了基因的信息成分,最终影响到有机体的表现型。同样,染色体畸变也在分子水平上得到说明。自发突变频率低的原因是由于生物机体内存在比较完善的修复系统。修复系统有多种形式,如光修复、切补修复、重组修复以及 SOS修复等。修复是有条件的,同时也并非每个机体都存在这些修复系统。修复系统的存在有利于保持遗传物质的稳定性,提高信息传递的精确度。