当输入的元素是个到之间的整数时,它的运行时间是。计数排序不是比较排序,排序的速度快于任何比较排序算法。
由于用来计数的数组的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。例如:计数排序是用来排序0到100之间的数字的最好的算法,但是它不适合按字母顺序排序人名。但是,计数排序可以用在基数排序算法中,能够更有效的排序数据范围很大的数组。
通俗地理解,例如有10个年龄不同的人,统计出有8个人的年龄比A小,那A的年龄就排在第9位,用这个方法可以得到其他每个人的位置,也就排好了序。当然,年龄有重复时需要特殊处理(保证稳定性),这就是为什么最后要反向填充目标数组,以及将每个数字的统计减去1的原因。算法的步骤如下:
找出待排序的数组中最大和最小的元素
统计数组中每个值为的元素出现的次数,存入数组的第项
对所有的计数累加(从中的第一个元素开始,每一项和前一项相加)
反向填充目标数组:将每个元素放在新数组的第项,每放一个元素就将减去1
public class CountingSort {
public static void main(String[] argv) {
int[] A = CountingSort.countingSort(new int[]{16, 4, 10, 14, 7, 9, 3, 2, 8, 1});
Utils.print(A);
}
public static int[] countingSort(int[] A)
{
int[] B = new int[A.length];
// 假设A中的数据a'有,0<=a' && a' < k并且k=100
int k = 100;
countingSort(A, B, k);
return B;
}
private static void countingSort(int[] A, int[] B, int k) {
int[] C = new int[k];
// 计数
for (int j = 0; j < A.length; j++)
{
int a = A[j];
C[a] += 1;
}
Utils.print(C);
// 求计数和
for (int i = 1; i < k; i++)
{
C[i] = C[i] + C[i - 1];
}
Utils.print(C);
// 整理
for (int j = A.length - 1; j >= 0; j--)
{
int a = A[j];
B[C[a] - 1] = a;
C[a] -= 1;
}
}
}
//针对c数组的大小,优化过的计数排序
public class CountSort {
public static void main(String []args) {
//排序的数组
int a[] = {100, 93, 97, 92, 96, 99, 92, 89, 93, 97, 90, 94, 92, 95};
int b[] = countSort(a);
for(int i : b)
{
System.out.print(i + " ");
}
System.out.println();
}
public static int[] countSort(int []a)
{
int b[] = new int[a.length];
int max = a[0], min = a[0];
for(int i : a)
{
if(i > max)
{
max = i;
}
if(i < min)
{
min = i;
}
}
//这里k的大小是要排序的数组中,元素大小的极值差+1
int k = max - min + 1;
int c[] = new int[k];
for(int i = 0; i < a.length; ++i)
{
c[a[i]-min] += 1;
//优化过的地方,减小了数组c的大小
}
for(int i = 1; i < c.length; ++i)
{
c[i] = c[i] + c[i-1];
}
for(int i = a.length-1;
i >= 0; --i)
{
b[--c[a[i]-min]] = a[i];
//按存取的方式取出c的元素
}
return b;
}
}
#include
#include
#include void print_arr(int *arr, int n)
{
int i;
printf("%d", arr[0]);
for (i = 1; i < n; i++)
printf(" %d", arr[i]);
printf("\n");
}
void counting_sort(int *ini_arr, int *sorted_arr, int n) {
int *count_arr = (int *) malloc(sizeof(int) * 100);
int i, j, k;
for (k = 0; k < 100; k++) count_arr[k] = 0;
for (i = 0; i < n; i++)
count_arr[ini_arr[i]]++;
for (k = 1; k < 100; k++)
count_arr[k] += count_arr[k - 1];
for (j = n; j > 0; j--)
sorted_arr[--count_arr[ini_arr[j - 1]]] = ini_arr[j - 1];
free(count_arr);
}
int main(int argc, char **argv) {
int n = 10;
int i;
int *arr = (int *) malloc(sizeof(int) * n);
int *sorted_arr = (int *) malloc(sizeof(int) * n);
srand(time(0));
for (i = 0; i < n; i++)
arr[i] = rand() % 100;
printf("ini_array: ");
print_arr(arr, n);
counting_sort(arr, sorted_arr, n);
printf("sorted_array: ");
print_arr(sorted_arr, n);
free(arr);
free(sorted_arr);
return 0;
}
Array.prototype.countSort = function() {
const C = [] for(let i = 0; i < this.length; i++)
{
const j = this[i]
C[j] >= 1 ? C[j] ++ : (C[j] = 1)
}
const D = []
for(let j = 0; j < C.length; j++)
{
if(C[j])
{
while(C[j] > 0)
{
D.push(j)
C[j]--
}
}
}
return D
}
const arr = [11, 9, 6, 8, 1, 3, 5, 1, 1, 0, 100]
console.log(arr.countSort())