设A和B是欧几里得空间的两个子集。如果它们可以分为有限个不相交子集的并集,形如和,且对任意i,子集全等于,那么这两个子集称为等度分解的(equidecomposable)。于是,这个悖论可以如下叙述:
一个球和它自身的两个拷贝是等度分解的。 |
对球来说,五块就足够做到这点了,但少于五块却不行。这个悖论甚至有个更强的版本:
任意两个三维欧几里得空间具有非空内部的子集是等度分解的。 |
换句话说,一块大理石可以分成有限块然后重新组合成一个行星,或者一部电话机可以变形之后藏进水百合花里面。在现实生活中这种变形之所以不可行是因为原子的体积不是无限小,数量不是无限大,但其几何形状确实可以这样变形的。如果知道总是可以存在从一个几何体的内部点一一映射到另一个的方法,也许这个悖论看上去就不那么怪异了。例如两个球可以双射到其自身同样级别的无限子集(例如一个球)。同样我们还可以使一个球映射到一个大点或者小点的球,只要根据半径放大系数即可将一个点映射到另一个。然而,这些变换一般来说不能保积,或者需要将几何体分割成不可数无限块。巴拿赫 - 塔斯基悖论出人意料的地方是仅用有限块进行旋转和平移就能完成变换。
使这个悖论成为可能的是无限的卷绕。技术上,这是不可测的,因此它们不具有“合理的”范围或者平常说的“体积”。用小刀等物理方法是无法完成这种分割的,因为它们只能分割出可测集合。这个纯粹存在性的数学定理指出在多数人熟悉的可测集合之外,还有更多更多的不可测集合。
对于三维以上的情形这个悖论依然成立。但对于欧几里得平面它不成立。(以上叙述不适用于三维空间的二维子集,因为这个子集可能具有空的内部。)同时,也有一些悖论性的分解组合在平面上成立:一个圆盘可以分割成有限块并重新拼成一个面积相同的实心正方形。参见塔斯基分割圆问题。
这个悖论表明如果等度分解的子集被认为具有相同体积的话,就无法对欧几里得空间的有界子集定义什么叫做“体积”。
证明是基于费利克斯·豪斯多夫早些时候的工作。他10年前发现一个类似的悖论,事实上,巴拿赫 - 塔斯基悖论正是豪斯多夫所用技术的一个推广应用。
逻辑学家常常对逻辑上不一致的命题使用“悖论”一词,例如说谎者悖论或者罗素悖论。巴拿赫 - 塔斯基悖论并非这种意义上的悖论,它是一个已证明的定理,只因为违反直觉才被称为悖论。由于其证明明确地用到选择公理,这种反常的结论被用作反对使用该公理的理据。
冯纽曼研究这个悖论时,创出了可均群的概念。他发现三维以上情形之所以产生悖论,和这些空间的旋转群的非可均性有关。
一个球和它自身的两个拷贝是等度分解的。 |