重心坐标

重心坐标

目录导航

三角形的重心坐标

在三角形情形中,重心坐标也叫面积坐标,因为P点关于三角形ABC的重心坐标和三角形PBC, PCA及PAB的(有向)面积成比例,证明如下(如右图所示)。

我们用黑体小写字母表示对应点的向量,比如三角形ABC顶点为,P点为等。设PBC, PCA及PAB面积之比为,设射线AP与BC交于D,则

从而

,故

所以,就是P的重心坐标。

坐标变换

给定三角形平面一点P,我们将这一点的面积坐标用笛卡尔坐标表示出来。

利用笛卡尔坐标中的三角形面积公式:

我们可得:

类似地有,注意ABC构成一个三角形,上式的分母不可能为0。

反过来则简单得多:

判断一点的位置

因重心坐标是笛卡尔坐标的一个线性变换,从而它们在边和三角形区域之间的变化是线性的。如果点在三角形内部,那么所有重心坐标属于开区间;如果一点在三角形的边上,至少有一个面积坐标为0,其余分量位于闭区间。如果有某个坐标小于0,则位于三角形外部,具体分布可参考上图。(图示中,B和C顶端的坐标正副反了,B的应该是(-,-,+),C的是(-,+,-)

应用

面积坐标在涉及到三角形子区域的工程学问题时特别有用,经常可以化简解析积分求值,高斯积分法表也常以面积坐标的形式给出。

考虑由顶点, 定义的三角形T,任何在三角形内部的点都能写成顶点的加权和:

这里是面积坐标。注意到。从而,函数T上的积分为:

这里S是三角形T的面积。注意上式具有线性插值的形式。

重心坐标提供了一种非结构网格上函数插值的方法,假设函数值在所有网格的顶点上已知。如果,则点位于三角形内部或边界上。我们取的插值为

这个线性插值是自动正规的因为

四面体的重心坐标

重心坐标容易推广到三维空间。3维单形即四面体,具有四个三角形面和四个顶点。

完全类似于三角形,四面体的顶点的重心坐标为(1,0,0,0),为(0,1,0,0),如是等等。

的笛卡尔坐标和为关于四面体的重心坐标的关系:

这里组成的四面体的体积,类似于三角形也可以用笛卡尔坐标的一个行列式表示出来。

3维重心坐标和2维一样,可以确定一点是否位于四面体内部,也能对四面体网格上函数插值。因为利用重心坐标可以极大地简化3维插值,四面体网格经常用于有限元分析。

相关百科
返回顶部
产品求购 求购