函数的奇偶性函数的奇偶性(odevity of a function),对任意xEl,若f(-x)=f(x),即在关于y轴的对称点的函数值相等,则f(x)称为偶函数;若f(-x)= - f(x),即对称点的函数值正负相反,则f(x)称为奇函数.在平面直角坐标系中,偶函数的图象对称于y轴,奇函数的图象对称于原点.可导的奇(偶)函数的导函数的奇偶性与原来函数相反.定义在对称区间(或点集)上的任何函数f(x)都可以表示成奇函数φ( x)和偶函数ψ(x)之和。
定理 奇函数图象关于原点成中心对称图形
f(x)为奇函数,f(x)的图象关于原点对称,如图1:
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
点(x,y)→(-x,-y)
奇函数图像关于原点对称图1 函数图像
定理 偶函数的图象关于y轴成轴对称图形
f(x)为偶函数,f(x)的图象关于Y轴对称,如图1
点(x,y)→(-x,y)
偶函数在某一区间上单调递减,则在它的对称区间上单调递增。
偶函数关于Y轴对称
1、利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫做奇函数f(-x)=f(x),则这个函数叫做偶函数
2、用求和(差)法判断:
若f(x)-f(-x)=2f(x),则f(x)为奇函数。
若f(x)+f(-x)=2f(x),则f(x)为偶函数。
3、用求商法判断
若=-1,(f(x)≠0)则f(x)为奇函数
若=1,(f(x)≠0)则f(x)为偶函数
1、大部分偶函数没有反函数(因为大部分偶函数在整个定义域内非单调函数)。
2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。
3、奇±奇=奇(可能为既奇又偶函数) 偶±偶=偶(可能为既奇又偶函数) 奇X奇=偶 偶X偶=偶 奇X偶=奇(两函数定义域要关于原点对称).
4、对于F(x)=f[g(x)]:
若g(x)是偶函数且f(x)是偶函数,则F[x]是偶函数。
若g(x) 是偶函数且f(x)是奇函数,则F[x]是偶函数。
若g(x)是奇函数且f(x)是奇函数,则F[x]是奇函数。
若g(x)是奇函数且f(x)是偶函数,则F[x]是偶函数。
5、奇函数与偶函数的定义域必须关于原点对称。
[1]奇偶性是整体性质;
[2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;
[3]f(-x)=f(x)的等价形式为:f(x)-f(-x)=0,=1(f(x)≠0)
f(-x)=-f(x)的等价形式为:f(x)+f(-x)=0;=-1(f(x)≠0)
[4]由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;
[5]既是奇函数,又是偶函数的函数有无数个,只要f(x)=0,且定义域关于原点对称即可