三角恒等变换

三角恒等变换

目录导航

基础等式

sin²a+cos²a=1

三角恒等变换三角恒等变换  sina/cosa=tana

两角和差

倍角公式

二倍角

三角恒等变换三角恒等变换  sin2α = 2cosαsinα = 2tanα / (1 + tan²α)

cos2α = cos²α-sin²α=1-2sin²α=2cos²α-1

tan2α = 2tanα/[1 - (tanα)²]

二倍角变式

sin2α = sin^2(α + π/4) - cos^2(α + π/4) = 2sin^2(a + π/4) - 1 = 1 - 2cos^2(α + π/4);

cos2α = 2sin(α + π/4)cos(α + π/4)

三倍角

sin3α=3sinα-4sin³α

cos3α=4cos³α-3cosα

tan3α=(3tanα-tan³α)/(1-3tan²α)

sin3α=4sinα×sin(π/3-α)sin(π/3+α)

cos3α=4cosα×cos(π/3-α)cos(π/3+α)

tan3α=tanα×tan(π/3-α)tan(π/3+α)

n倍角

根据欧拉公式(cos θ+i·sin θ)^n=cos nθ+i·sin nθ (注:sin θ前的 i 是虚数单位,即-1开方)

将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式

sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α

辅助角

Asinα+Bcosα=√(A^2+B^2)sin[α+arctan(B/A)]

Asinα+Bcosα=√(A^2+B^2)cos[α-arctan(A/B)]

半角公式

sin(α/2)=±√[(1-cosα)/2]

cos(α/2)=±√[(1+cosα)/2]

tan(α/2)=±√[(1-cosα)/(1+cosα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotα

cot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotα

sec(α/2)=±√[(2secα/(secα+1)]

csc(α/2)=±√[(2secα/(secα-1)]

诱导公式

三角恒等变换三角恒等变换(3)kπ+a

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(kπ+α)=tanα

cot(kπ+α)=cotα

sec(2kπ+α)=secα

csc(2kπ+α)=cscα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sec(π+α)=-secα

csc(π+α)=-cscα

-a

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

sec(-α)=secα

csc(-α)=-cscα

π-a

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sec(π-α)=-secα

csc(π-α)=cscα

π/2±a

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sec(π/2+α)=-cscα

csc(π/2+α)=secα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sec(π/2-α)=cscα

csc(π/2-α)=secα

3π/2±a

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sec(3π/2+α)=cscα

csc(3π/2+α)=-secα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sec(3π/2-α)=-cscα

csc(3π/2-α)=-secα

恒等变形

数学概念数学概念(3)tan(a+π/4)=(tan a+1)/(1-tan a)

tan(a-π/4)=(tan a-1)/(1+tan a)

asinx+bcosx=[√(a²+b²)]{[a/√(a²+b²)]sinx+[b/√(a²+b²)]cosx}=[√(a²+b²)]sin(x+y)【辅助角公式,其中tan y=b/a,或者说sinx=b/[√(a²+b²)],cosx=a/[√(a²+b²)]】

万能代换

半角的 正弦、余弦 和正切公式( 降幂扩角公式)

积化和差

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)

和差化积

这里应该是cos((α-+β)/2)

内角公式

设A,B,C是三角形的三个 内角

sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)

tanA+tanB+tanC=tanAtanBtanC

cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1

cotAcotB+cotBcotC+cotCcotA=1

(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1

sin2A+sin2B+sin2C=4sinAsinBsinC

降幂公式

证明方法

首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则 在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA( 做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=c AD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正 弦和的公式。利用正弦和 余弦的定义及周期 性,可证明该公式对 任意角成立。于是有 cos(A+B)=sin(90-A-B)=sin(90-A)cos(-B)+cos(90-A)sin(-B)=cosAcosB-sinAsinB

由此求得以上全部公式

相关百科
返回顶部
产品求购 求购