牺牲阳极保护(sacrificial anode protection)
牺牲阳极保护:从连接辅助阳极与被保护金属构成的腐蚀电池中获得保护电流所实现的电化学保护。[1]
根据电化学腐蚀原理,依靠外部电流的流入改变金属的电位,从而降低金属腐蚀速度的一种材料保护技术。按照金属电位变动的趋向,电化学保护分为阴极保护和阳极保护两类。①阴极保护。通过降低金属电位而达到保护目的的,称为阴极保护。根据保护电流的来源,阴极保护有外加电流法和牺牲阳极法。外加电流法是由外部直流电源提供保护电流,电源的负极连接保护对象,正极连接辅助阳极,通过电解质环境构成电流回路。牺牲阳极法是依靠电位负于保护对象的金属(牺牲阳极)自身消耗来提供保护电流,保护对象直接与牺牲阳极连接,在电解质环境中构成保护电流回路。阴极保护主要用于防止土壤、海水等中性介质中的金属腐蚀。②阳极保护。通过提高可钝化金属的电位使其进入钝态而达到保护目的的,称为阳极保护。阳极保护是利用阳极极化电流使金属处于稳定的钝态,其保护系统类似于外加电流阴极保护系统,只是极化电流的方向相反。只有具有活化 - 钝化转变的腐蚀体系才能采用阳极保护技术,例如硫酸贮罐、氨水贮槽等。
此方法多用于防止铁锈。牺牲阳极保护基本上是附加一个金属(更活泼)片,通常是锌或者镁。也就是说,将养活更多的活性金属与电子铁铁被氧化形成铁离子的时间,从而还原铁,而不是让它再次变成氢氧化铁(铁锈)。因此,更活泼的金属为铁“牺牲”。这是一个常用的方法,通常用以防止大型钢铁物体生锈,如地下管道,油轮。
1.不需要外部电源;
2.很少维护;
3.小的电流输出导致小的或无杂散电流干扰;
4.容易安装;
5.多数情况下易于增加阳极;
6.提供均匀的电流分配;
1.较低的驱动电压/电流;
2.对于劣质涂层的结构物需要较多的阳极;
3.在高电阻的土壤环境下可能是无效的;
4.由于较低的电流效率(自腐蚀消耗),其每安培电流费用高于外加电流阴极保护;
5.替换用废的阳极是困难或昂贵的。
牺牲阳极通常仅经济地应用在保护电流需要量小的构筑物上和低土壤电阻率环境中。此外,当没有供电条件或出现不经济的情况时才有应用价值。
适用于土壤中的牺牲阳极材料主要是镁,在海水中是锌和铝。为了使电流输出尽量保持稳定和降低阳极接地电阻,土壤中的牺牲阳极周围应采用化学填包料,主要由75%的硫酸钙,20%的膨润土和5%硫酸钠混合而成。牺牲阳极不能埋放在焦炭中,在成组使用时,阳极间距至少应是3m。阳极顶部土壤覆盖层厚度至少为0.6m。为了能够测量断电电位,牺牲阳极应通过测量盒与管道相连接,牺牲阳极在交流牵引系统附近地区应用时,阳极体上的交流感应持续电压不应超过20V。
1.袋装牺牲阳极应使用适当夯实的材料回填。当阳极和专用填包料分开供应时,阳极应置于填包料的中心位置,并且在回填前将填包料捣实。在所有的操作中均应小心,确保导线和接头不受损伤。为避免张应力,导线应留有充分的松弛度。
2.在使用手镯式阳极的位置,阳极下方的管道覆盖层应没有缺陷。安装手镯式阳极时,应小心进行以防损伤覆盖层。如果在管道上喷涂混凝土后,应去除阳极表面上所有混凝土,如果使用钢筋混凝土,在阳极和钢筋网之间或钢筋网和管道之间严禁有金属接触。
3.在使用袋装阳极的位置,可以挖沟或犁沟埋设,根据要求使用或不使用化学填包料,通常与被保护管道的管段平行。
水下的金属结构物使用牺牲阳极 ,通常3个月左右进行一次测量,主要是测量各个测量点的电位,阳极输出电流等数值。
还要注意的是电缆与水下结构金属相连的阳极,应该定期的检查电缆,避免因波浪、船只造成的破坏及时修复。
在构筑物对水的保护电位不够负时,这时就要更换阳极,还要考虑提出其他阳极进行检查。
还有就是固定在水下构筑物的 ,无法测量输出电流,只能根据保护电位测量。
海水的污染程度有时也会影响阳极的工作性能。