代数稳定判据

代数稳定判据

判据 系统特征多项式的系数
中文名 代数稳定判据
目录导航

基本内容

  代数稳定判据

  algebraic stability criterion

  根据系统特征多项式的系数直接判断系统稳定性的判据。系统的特征多项式就是系统传递函数的分母多项式,它是复变数s的一个代数多项式,使这一多项式为零而求得的s值称为特征多项式的根。代数稳定判据只适用于线性定常系统(见线性系统、定常系统)且其特征多项式能给出的情况。线性定常系统稳定的充分必要条件,是其特征多项式的根均具有负实部,亦即均位于不包含虚轴的左半s复数平面内。代数稳定判据的优点是可以避免求根的复杂过程,直接根据多项式的系数的一些代数运算,来判定系统是否满足上述稳定条件。

规则

  五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;

  两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;

  三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。

解方程

  初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。

  要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。

  在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。

  有了有理数,初等代数能解决的问题就大大的扩充了,但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。

  数学家们说不用把复数再进行扩展。这就是代数里的一个著名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。

相关百科
返回顶部
产品求购 求购