异面直线所成角

异面直线所成角

目录导航

分类

异面直线

1.直线a,b是异面直线,经过空间一点O,分别引直线A//a,B//b,相交直线A,B所成的锐角(或直角)叫做异

面直线a,b所成的角。

2. 异面直线所成角的计算。

(1)平移其中一条或两条使其相交。

(2)连接端点,使角在一个三角形中。(或者平行四边形等可以轻易求出角与角关系的基本平面几何形中)

(3)计算三条边长,用余弦定理计算余弦值。

(4)若余弦值为负,则取其相反数。

公垂线

与两条异面直线均垂直、相交的直线叫两条异面直线的公垂线,两条异面直线的公垂线有且只有一条。

两条直线垂直

(1)相交垂直 (2)异面垂直

两条异面直线的公垂线段的长度,叫两条异面直线的距离。

求法

一般用几何法和向量法都可以求。

几何法

1.平移法。将两条直线或其中一条平移(找出平行线)至它们相交,把异面转化为共面,用余弦定理或正弦定理来求(一般是余弦定理)。一般采用平行四边形或三角形中位线来构造平行线。

2.三余弦定理法。运用三余弦定理关键是要找出一条直线a所在的平面α和另一条直线b在该平面α内的射影,求出b与α所成角以及a与b的射影b‘所成角,进而求a与b所成角。

3.三棱锥法。三棱锥(四面体)中两条相对的棱互为异面直线,设有四面体ABCD,其中AD与BC互为异面直线,那么它们所成角θ满足以下关系:

运用该公式也可以求异面直线所成角。

向量法

  1. 向量几何法。运用向量的加减法规则,把要求的异面直线用向量表示,并运用向量的运算法则(例如分配律、共线向量)来求出cosθ
  2. 向量代数法。当容易找到三条两两垂直的直线时,可以以它们的交点为坐标轴原点建立直角坐标系,运用代数方法计算。

判定方法

1.根据异面直线的定义把不在任何一个平面内的两条直线叫做异面直线。

2.异面直线的判定方法。

平移法

将两条直线平移到同一平面,若相交,且在未平移之前不相交称之为异面直线。(平移时也可以使用放缩法,将两直线通过取中点、三等分点等方式使它们的顶点交于一点。)

反证法

:假设两条直线不异面,则不是平行就是相交。假设一:相交——若相交则两条直线有公共交点且共面,若不相交则证明假设二,假设二:平行——若平行则两直线平移无交点,若不成立,则假设二不成立,则假设不成立,所以两直线异面。假设两直线共面,并证明不成立。

直接证明

证明两条直线不平行且不相交(建议难题用反证法)

坐标法

选取空间坐标原点,建立空间坐标系并将两条直线上任意两点的坐标读出,并计算出两直线的向量,比较其是否为平行向量若是则两直线不异面。并用具体条件证明其不相交即可证明两直线为异面直线。

判定定理

平面内一点和平面外一点的连线,与平面内不经过该点的直线互为异面直线。

例如平面ABC,D在面ABC外,那么AB和CD互为异面直线。(AD和BC,BD和AC也都互为异面直线)

相关百科
返回顶部
产品求购 求购