超低温技术在许多领域的应用到今天已经有了较大进展,主要应用于能源(超导输电、超导储能、超导电机等),交通(磁悬浮列车、船舶磁推进器),医疗卫生(核磁共振成像、生物磁仪器等),电子技术(超导微波技术应用、各类超导传感技术、半导体—超导体集成电路、超导计算元件等),重大科学工程(加速器、受控热核装置等)和国防技术(超导反潜、扫雷、飞船载入、电磁推进、通讯及制导等)等领域。
低于1K的温度叫做超低温。获得这样低的温度,除人们所熟知的,通过对4He液浴减压可达最低温度约0.5K外,还有下列方法:利用3He液浴减压最低温度可达到 0.3K;利用硝酸铈镁(CMN)等顺磁盐进行绝热去磁,可达到几毫开温区;利用3He-4He稀释致冷机可达1.5mK,利用坡密朗丘克冷却和绝热核去磁可达到更低的温度。
温度在0.32K以下时,液态3He的熵比固态3He的熵要小,因而加超低温技术压发生液-固相变时要吸热,从而达到致冷效果。此法由I.Y.坡密朗丘克于1950年提出,1965年实验成功。此法常在稀释致冷机的基础上使用,可达到的极限低温为1mK。1972年在此低温附近发现了3He的超流新相。[1][2]