热障飞机的飞行速度超过一定界限时因高速气流引起机体表面温度急剧升高而遇到的障碍。飞机在飞行时,机体表面与空气强烈摩擦会产生热量。如果速度低于一定值,产生的热量不大,很容易散发掉。当速度超过这个值时,产生的大量气动热来不及散发,于是引起机体表面温度急剧升高,并因此产生许多新问题。飞机的飞行速度越高,加热越严重,导致机体材料结构强度减弱,刚度降低,使飞机外形受到破坏,甚至发生灾难性的颤振。一般认为,飞机出现热障的速度段在马赫数2.5(即2.5倍音速)以上。对于要突破热障的飞机,必须采取防热措施,如采用耐热材料、加装隔热设备安装冷却系统等。
热障在晴朗的夜晚,仰望灿烂星空,有时会看到耀眼的陨星,倏忽即逝。它为什么会发光呢? 原来,这是高速飞行的陨星进入大气层与空气剧烈摩擦,猛烈燃烧而发出的光亮 。当宇宙 航天器完成任务返回地球时,面临着与陨星同样的残酷生存环境。研究表明, 当宇宙飞行 器的飞行速度达到3倍声速时,其前端温度可达330℃;当飞行速度为6倍声速时,可达1480℃ 。
宇宙飞行器遨游太空归来,到达离地面60-70千米时,速度仍然保持在声的20多倍,温度在10000℃以上,这样的高温足以把航天器化作一团烈火。高速导致高温这似乎是一道不可逾越的障碍,人们把这种障碍成为热障。显然热障并没有阻挡住人类挺进宇 宙的步伐, 那么科学家们是如何服热障,使航天器安全回家的呢?[1]
陨石穿越太空到达地球的神奇经历给了科学家们以特殊的启迪。分析陨石的成分和机构发现 ,陨石表面虽然已经熔融,但内部的化学成分没有发生变化。这说明陨石在下落过程中, 表面因摩擦生热达到几千度高温面熔融,但由于穿过大气层的时间很短,热量来不及传到陨石内部。给宇宙飞行器的头部戴一顶用烧蚀材料制成“盔甲”,把摩擦产生的热量消耗在烧蚀材料的熔融、汽化等一系列物理和化学变化中,“丢卒保车”就能达到保护宇宙飞 行器的目的。
一位宇航员描述了宇宙飞船闯过热障的壮观景象:飞船进入大气层,首先从舷窗中看到烟雾,然后出现五彩缤纷的火焰,同时发出噼噼啪啪的声音。这是飞船头部的烧蚀材料在燃烧 ,它们牺牲了自己,把飞船内的温度始终维持在常温范围,保护飞船平安返回地面。
为了更好地表达飞行速度接近或超过当地音速的程度,科学家采用了一个反映飞行速度的重要参数:马赫数。它是飞行速度与当地音速的比值,简称M数。M数是以奥地利物理学家伊·马赫的姓氏命名的。马赫曾在19世纪末期进行过枪弹弹丸的超音速实验,最早发现扰动源在超音速气流中产生的波阵面,即马赫波的存在。M数小于1,表示飞行速度小于音速,是亚音速飞行;M数等于1,表示飞行速度与音速相等;M数大于1,表示飞行速度大于音速,是超音速飞行。
美国的X-2火箭飞到了38500米的高空(2)热障的出现使空气动力学诞生了一个新的分支学科──气动热力学。它主要研究气动外形、飞行速度、边界层、大气环境等因素对飞机加热的影响,并为突破热障提供飞机外形设计指导。
1956年9月27日,美国的X-2火箭飞机在试飞中首次突破了3倍音速大关,达到3.2马赫,首次突破热障,但不幸出现了事故导致坠毁。将“高空高速”这一情结发挥到极致的是两种“双3”飞机,前苏联米高扬设计局研制的米格-25战斗机和美国洛克希德公司研制的SR-71“黑鸟”战略侦察机。它们的升限高达3万米,最大速度则达到了惊人的M3.0,已经接近了喷气式发动机的极限。SR-71飞机,其机体的93%采用钛合金,因而顺利地越过了热障,创造了音速3.3倍的世界纪录。
为克服热障,可采用耐热材料(钛合金和不锈钢等)、加装隔热设备、安装冷却系统等,保证飞机不会因高温而损毁。
米格-25战斗机RS-71“黑鸟”战略侦察机目前,突破热障的代表机型主要有前苏联米高扬设计局研制的米格-25战斗机和美国洛克希德公司研制的RS-71“黑鸟”战略侦察机。
从航空器到航天器,从军用机到民航机,当飞行器的飞行速度接近音速或超过音速的一定倍数时,飞行器飞行会引起或遇到一系列不正常的现象,给飞行器造成不同程度的“障碍”,严重时可导致飞行器损毁事故,这就是飞行器运行的“三大障碍”——音障、热障和黑障。[2]
音障是40年代后期出现的一个名词。1945年6月,英国试飞DH-106“燕子”时,因飞机速度接近音速,造成机身破裂,机毁人亡。事故发生后,英国的一个科学家说:“音速像是面前的一堵障碍墙。”于是,“音障”这个术语诞生并流行开来。
当飞行速度快接近音速时,飞机的性能急剧变化,操纵困难,飞行速度再也上不去了。这就是所谓的“音障”。造成“音障”的原因,主要是因为飞机上出现了局部超音速区,出现了激波,使气流严重分离,阻力剧增。解决这一问题的办法,一是采用后掠翼等先进气动布局,二是进一步加大发动机推力。
飞机突破音障的瞬间世界上第一架冲击音障的试验机是美国制造的X-1试验机。它设计成尖尖的机头、薄薄的机翼,干干净净的外形,结构极其结实,用4台火箭发动机作为动力。1947年10月14日,美国空军的试飞员查克·耶格尔上尉,驾驶贝尔X-1型“空中火箭”式动力研究机,在12800米的高空,使飞行速度达到1078公里/小时,相当于M1.015。24岁的查克·耶格尔从此成为世界上第一个飞得比声音更快的人,使他的名字载入航空史册。
在人类首次突破“音障”之后,研制超音速飞机的进展就加快了。1951年8月7日,美国海军的道格拉斯D.558-II型“空中火箭”式研究机的速度,达到M1.88。1953年,“空中火箭”的飞行速度又超过了M2.0,约合2172公里/小时。1954年,前苏联的米格-19和美国的F-100“超佩刀”问世,这是两架最先服役的仅依靠本身喷气发动机即可在平飞中超过音速的战斗机;很快,1958年F-104和米格-21也将这一记录提高到了M2.0。
飞机在空中飞行,会与空气发生摩擦,空气受到阻滞和压缩,流速降低,动能转化为热能,使飞机表面加热。如马赫数3时,机头温度可上升到360摄氏度。它造成的危害会使蒙皮和结构变形,使仪表设备失灵,燃料蒸发或易燃等,从而成为影响飞机速度提高的一个障碍,这种现象就是“热障”。
热障是飞行器作超音速飞行时,因气动加热而引起的一系列不利现象。主要包括:因飞行器本体温度升高导致材料性能下降,使结构强度和刚度降低;在结构中产生热应力,使结构应力、反应力和应变增大;过高的升温会使金属蒙皮熔化或烧毁;环境温度升高,使乘员和飞行器内设备不能正常工作。
一般把M数2.5作为“热障”的界线,低于这一值,气动加热不严重,可用常规的方法和材料设计、制造飞机;高于该值,则必须采取克服气动加热问题的措施。为克服热障,可采用耐热材料(钛合金和不锈钢等)、加装隔热设备、安装冷却系统等,保证飞机不会因高温而损毁。
黑障是发生在大气层的一种特有现象。当卫星、航天飞船、洲际导弹等空间飞行器以很高的速度再入大气层返回地球时,在一定高度和一定时间内与地面通信联络会严重失效,甚至完全中断,这就是黑障。
黑障区大约出现在地球上空35-80km的大气层间。宇宙飞船在通过黑障时,船体外壳将达到2000摄氏度的高温,高温一是有可能会使船体框架变形,导致坠毁;二是使飞船丧失与外界的无线电联系,从而地面人员无法得知飞船的实时状况。
黑障是怎样形成的呢?我们知道,所有飞行器返回大气层的时候,飞行速度极高,可以达到音速的十几倍到几百倍,这就使飞行器的前端形成了一个很强的激波。由于飞行器头部周围激波的压缩和大气的粘度作用,使高速飞行的动能大量转化为热能。由于气动加热,贴近飞行器表面的气体和飞行器材料表面的分子被分解和电离,形成一个等离子层。由于等离子体具有吸收和反射电磁波的能力,因此包裹飞行器的等离子体层,实际是一个等离子电磁波屏蔽层。所以当飞行器进入被等离子体包裹状态时,飞行器外的无线电信号进不到飞行器内,飞行器内的电信号也传不到飞行器外,一时间,飞行器内外失去了联系。此时,地面与飞行器之间的无线电通信便中断了。
随着飞行器高度的下降,当速度降低到一定程度时,不再有足够的温度使气体分子电离,等离子体层解除,黑障就会消失。
在黑障区,由于返回舱跟地面控制中心片刻失去通讯,且与大气层的摩擦会产生上千摄氏度的高温,这段期间航天员最危险。如果不采取防热措施,航天员将无法承受,返回舱结构也会受损毁。以前的航天员无防范,万一因为太空船在这里烧船就会殉职。现今的航天员必须穿着宇航服经历这个黑障区。
黑障的范围取决于再入体的外形、材料、再入速度,以及发射信号的频率和功率等。黑障区给载人飞船再入返回时的实时通信和再入测量造成困难。从20世纪50年代起,人们就开始研究黑障及其消除方法。一方面通过设计比较理想的再入体的外形和喷洒某种消除等离子的材料来消除或减弱等离子鞘;另一方面改良通信与测量的方法和设备,以减弱黑障区的影响,例如,提高信号的频率和功率,将天线安装在等离子鞘最薄的位置等。但是这些方法只能缩短信号中断的时间,还不能完全解决再入黑障问题。另一种设想是用毫米波或激光穿透等离子鞘来解决再入通信中断问题。
主要有吸热法:采用质量大、比热容高的金属,但因其质量大,而且高温下易熔融变形,现已被淘汰;
辐射法:采用辐射率高、吸收率低的难熔金属,但在高热流条件下应用受到限制;
烧蚀法:在热流作用下,材料本身能发生分解、熔化、蒸发、升华等多种吸热的物理化学变化,借材料自身质量消耗带走大量热量,从而阻止热传导到材料的内部结构中。这是目前应用最为广泛的热防护方法。
作为烧蚀材料,要求汽化热大,热容量大,绝热性好,向外界辐射热量的本领强。烧蚀材料有多种,陶瓷是其中的佼佼者,而纤维补强陶瓷材料是最佳选择。近年来,研制成功了许多 具有高强度、用它们制成的碳化物、氮化物复合陶瓷是优异的烧蚀材料, 成为航天飞行器的不破盔甲。
烧蚀材料按烧蚀机理分为升华型、熔化型和碳化型3类。
聚四氟乙烯、石墨和碳/碳复合材料属于升华型。这些材料在高温下升华,带走大量热量,而且碳是一种辐射系数较高的材料,因而具有很好的抗烧蚀性能。不过这类材料的隔热性能较差,加上这类材料的成本较高,限制了其更广泛的应用。
石英和玻璃属于熔化型烧蚀材料。这些材料在高温下熔化吸收热量,而且熔化后形成的SiO2液态膜具有抗高速气流冲刷的能力,不过这类材料的工艺性较差,不适合成型大面积防热套。
纤维增强树脂复合材料属于碳化型烧蚀材料。它是以纤维或布作为增强材料,以树脂为基体制成复合材料。这类材料主要利用高分子材料在高温下碳化吸收热量,并进一步利用其形成的碳化层辐射散热。
这3类材料中,以碳化型烧蚀材料应用最多。
对烧蚀材料的评价,从两个层面上展开,即性能测试和模拟试验。性能测试主要包括以下四个方面:
比热。比热大的材料在烧蚀过程中可以吸收大量的热量;
热导系数。热导系数低的材料能使高温部分仅限于表面,导致热量难以传入内部结构中去;
烧蚀速度。材料在高温环境中的烧蚀速度要小;
密度。密度小的材料在航天航空领域中能最大限度地减少结构件的总质量。
热障图层材料燃气涡轮发动机被广泛的应用于飞机,船舶,车辆和发电机组。在过去的50年间,典型燃气轮机的涡轮前温度已经从960℃提高到了1500-1600℃,而涡轮机叶片多由Ni基(或Co基)高温合金构成,这一温度已慢慢接近其熔点。在叶片表面制备一层阻碍高温火焰和基体直接接触的陶瓷材料,就能实现提高使用温度,降低系统冷却要求的目的。这部分起到隔热和抗氧化作用的涂层系统,就是所谓的热障涂层。
高速导致高温这似乎是一道不可逾越的障碍。显然热障并没有阻挡住人类挺进宇宙的步伐,那么科学家们是如何克服热障,使航天器安全回家的呢?当宇宙飞行器遨游太空归来,到达离地面60-70km时,速度仍然保持在声速的20多倍,温度在10000℃以上,这样的高温足以把航天器化作一团烈火。即便当宇宙飞船和返回式卫星在重返大气层时,飞行器的飞行速度在6倍声速时,其前端温度也高达1480℃。为保证其不致被烧毁,给宇宙飞行器的头部戴一顶用烧蚀材料制成的“盔甲”,把摩擦产生的热量消耗在烧蚀材料的熔融、汽化等一系列物理和化学变化中,“丢卒保车”就能达到保护宇宙飞行器的目的。一位宇航员描述了宇宙飞船闯过热障的壮观景象:飞船进入大气层,首先从舷窗中看到烟雾,然后出现五彩缤纷的火焰,同时发出噼噼啪啪的声音。这是飞船头部的烧蚀材料在燃烧,它们牺牲了自己,把飞船内的温度始终维持在常温范围,保护飞船平安返回地面。
目前主要由如下方法突破热障:采用特殊的规避热障的设计,耐热材料(钛合金和不锈钢等)、加装隔热设备、安装冷却系统等,保证飞机不会因高温而损毁。
罹难宇航员及飞机残骸(3)美国宇航局确认,美国“哥伦比亚”号航天飞机外部燃料箱表面泡沫材料安装过程中存在的缺陷,是造成整起事故的祸首。“哥伦比亚”号航天飞机事故调查委员会去年公布的调查报告称,外部燃料箱表面脱落的一块泡沫材料击中航天飞机热保护系统,是导致事故发生的主要原因。
事故发生后,由于无法迅速找回事发时的泡沫材料和燃料箱进行检验,宇航局和事故调查委员会一直没对事故原因作出最终定论。目前,“哥伦比亚”号外部燃料箱约50万块碎片已被找到并重新拼在一起。宇航局负责“哥伦比亚”号外部燃料箱工程的首席工程师尼尔·奥特说,宇航局经多次试验确定,泡沫材料安装过程有缺陷是造成事故的主要原因。
奥特说,泡沫材料本身的化学成分没有问题,问题在于用喷枪在燃料箱外敷设泡沫材料的过程。试验表明,目前的敷设工艺会在各块泡沫材料之间留下缝隙,液态氢能够渗入其间。航天飞机起飞后,氢气受热膨胀,最终导致大块泡沫材料脱落。撞击“哥伦比亚”号的泡沫材料有手提箱大小,重约0.75公斤。它几乎是被整块“撕下”后,高速撞击到航天飞机左翼前缘的热保护系统,并形成裂隙。航天飞机重返大气层时,超高温气体得以从裂隙处进入“哥伦比亚”号机体,造成航天飞机解体。
奥特说,根据新标准对燃料箱进行检测是目前摆在美国宇航局面前的最大障碍。新标准要求,不允许有0.5盎司(14.17克)以上的燃料箱外泡沫材料脱落。美国宇航局目前准备对所有航天飞机的11个燃料箱进行检测,检查每个燃料箱需要4千万美元。