放射诊断学

放射诊断学

目录导航

起源发展

 

自德国物理学家伦琴发现X线以来,放射诊断学的发展已有100余年的历史,30年来放射诊断学发展相当迅速,CT、MR、超声、PET等新技术不断涌现,其在临床应用的范围不断扩大,在疾病的诊治和研究中的作用已越来越大,已成为医学领域中发展最快的学科之一,放射诊断学课程建设及有关放射科的人材培养问题已日益受到重视。

 

放射科包括了常规放射、CT、MR、超声、核医学、放射治疗、介入治疗等,其应用范围广,已完全不同于数十年前放射科主要以常规放射诊断为主的情况。特别是当前影像学设备和技术发展相当迅速,如多层螺旋CT,在1998年推出后,当时是4层螺旋CT,至2000年和2001年已分别有8层的螺旋CT和16层的多层螺旋CT开始进入临床使用,其扫描速度已可达0.4s-0.5s,所切层厚可达0.5mm,重建速度已可在0.5s以下,其分辨率已相当高,后处理的软件日益增多,CT的仿真内镜、CT血管成像等均已相当普及。在MR方面,3.0T的MR已应用于临床,其图像信噪比,空间和时间分辨率均已达到了相当的高度,各种新技术不断涌现,除了MR血管成像、水成像等已经相当成熟外,在功能性成像方面,进展相当迅速,特别是脑功能成像。新的电子束CT Espeed在心脏和其它活动脏器的动态检测和功能检测方面有很大的优势,今后的CT发展可能会向电子束CT和多层CT技术相结合的方面发展。在数字化成像,如DR、CR及PACS等方面进展也相当快,随着PACS建设的逐步普及,和HIS、RIS的整合,已使放射科和医院的工作流程发生了很大的变化,PACS建成后可逐步做到无片化和无纸化,使放射诊断学信息非常方便地在网上传输、并进行诊断、会诊和各种病例讨论,除可做到医院内各科室间的交流、并可进行医院和医院间及地域间的连接,使医疗信息资源得到充分的共享,使病人的诊断和治疗更加便捷、提高医疗质量和服务品质。

研究范围

 

放射诊断学顺应影像医学的发展,主要研究有关电子计算机体层摄影(CT)、磁共振(MRI)诊断和介入放射学等内容,并介绍发展的信息放射学。研究的重点是医学影像学新技术的基础理论、基本知识和基本技能。研究内容以三基即总论、各系统的正常X线、CT、MRI表现和基本病变X线、CT、MIRI表现为主,并适当编入了部分疾病的X线、CT、MRI诊断,以放射诊断学科的系统性、完整性。掌握CT、MRI诊断学应用原理和概况,熟悉常用CT、MRI检查方法及其在在临床工作中的正确使用,了解CT、MRI诊断的方法、原则、价值、限度和地位,了解数字化X线成像、图像存档与传输系统、信息放射学的基本原理与临床应用。

学科分类

 

放射诊断学包括常规放射学(X线片和常规血管造影)、 断层影像技术(含计算机断层,磁共振成像及超声检查)和放射学对比剂(有含碘造影剂、MRI血管内对比剂、胃肠道造影剂和超声血管内对比剂)的基本原理。神经放射学,包括概述、头面部创伤、脑血管疾病、中枢神经系统肿瘤和肿瘤样病变、中枢神经系统感染、脑白质和神经脱髓鞘病变、儿科神经影像学、头颈部成像、脊柱非退行性病变、腰椎间盘病变和椎管狭窄。肺部放射学,包括胸部影像学检查方法、正常解剖和影像学表现,纵隔和肺门病变、肺血管病、肺部肿瘤、肺部感染、弥漫性疾病、气道疾病以及胸膜、胸壁、膈病变和其他胸部病变。心脏影像学,包括心脏解剖生理和影像学方法,获得性心脏疾患的影像学和心脏MRI。

血管和介入放射学,包括胸主动脉、肺动脉和外周血管病变,腹部动脉、静脉系统和非血管介入治疗。胃肠道疾病,先是腹部和盆腔概述,然后介绍的病变部位包括肝、胆道树和胆囊、胰腺和脾脏、咽部和食道食管、胃和十二指肠、小肠系膜、结肠和阑尾。生殖泌尿系统,包括肾上腺和肾、肾盂肾盏系统、输尿管、膀胱和尿道病变,生殖道放射学和磁共振成像。超声诊断,包括腹部超声、生殖道和膀胱超声、产科超声、胸部、甲状腺、甲状旁腺和新生儿颅脑超声以及血管超声。骨骼肌肉系统放射学包括良性囊性骨疾病、恶性骨软组织肿瘤、骨骼创伤、关节炎、代谢性骨疾患、依据影像学表现能诊断的骨骼病变、其它骨骼病变以及膝关节、肩关节和脚踝MRI。儿科影像学,包括小儿胸片、小儿腹部和盆腔。核放射学,包括核放射学总论、核放射学基础(放射学物理的相关方面、放射安全、放射性药物和核放射学成像系统和放射检测器介绍)、全身各个部位的闪烁成像,包括骨骼系统、肺、心血管系统、内分泌腺体、胃肠道、肝/脾和肝胆管系统和泌尿生殖系统,此外还包括炎性和感染性病变的闪烁成像诊断、肿瘤分子影像学、中枢神经系统闪烁成像和正电子发射断层成像 。

研究意义

 

放射诊断学教材及课程,多以传统内容为主,有些内容陈旧,与医学影像设备(如CT、MR、DSA)的迅猛发展、放射诊断学知识的不断更新不相符合,随着新设备、新技术的进入和发展,工作流程的不断改进和优化,对放射科专科医师和其他工作人员不断提出了新的要求,如何使用这些新设备、新技术,充分发挥这些设备的功能和作用,为医、教、研服务,产生良好的社会效益和经济效益,已越来越受到关注。拓展医学生、研究生、进修生和青年医师的知识面,了解当今影像医学的发展及应用价值,课程建设目标是通过放射诊断学进展这一课程的讲授,让学生了解当今的影像学进展和临床各科的关系及结合点,认识现有医学影像设备的作用、更好地为保障人民的医疗和健康服务。关键是要有一支高素质的专业技术和师资队伍,系统化讲授当前影像医学的发展,将对提高影像学和临床医学的教学质量具有很大的帮助和意义,规范化地培养影像医学的专门人材,对发展放射诊断学专业和医、教、研工作来讲具有重要的意义。

X线放射研究

 

穿透性

X线能穿透一般可见光所不能透过的物质,包括人体在内。其穿透能力的强X线的波长以及被穿透物质的密度与厚度有关。X线波长愈短,穿透力就愈大;特质密度愈低,厚度愈薄,则X线愈易穿透。在实际工作中,常以通过球管的电压伏值的大小代表X线的穿透性(即X线的质),而以单位时间内通过X线的电流与时间的乘积代表X线的量。

荧光作用

X线波长很短,肉眼看不见,但照射在某些化合物(如钨酸钙,硫氧化钆等)被其吸收后,就可发生波长较长且肉眼可见的荧光,荧光的强弱和所接受的X线量多少成正比,与被穿透物体的密度及厚度成反比。根据X线的荧光作用,利用以上化合物制成透视荧光屏或照相暗匣里的增感纸,供透视或照片用。

感光作用

X线和日光一样,对摄影胶片有感光作用。感光强弱和胱片接受的X线量成正比。胶片涂有溴化银乳剂,感光后放出银离子(Ag ),经暗室显影定影处理后,胶片感光部分因银离子沉着而显黑色,其余未感光部分的溴化银被清除而显出胶出本色,亦即白色。由于身体各部位组织密度不同,胶片出现黑—灰—白不同层次的图像,这就是X线照相的原理。

电离作用及生物效应

X线或其它射线(例如γ线)通过物质被吸收时,可使组成物质的分子分解成为正负离子,称为电离作用,离子的多少和物质吸收的X线量成正比。通过空气或其它物质产生电离作用,利用仪表测量电离的程度就可以计算X线的量。同样,X线通过人体被吸收,也产生电离作用,并引起体液和细胞内一系列生物化学作用,使组织细胞的机能形态受到不同程度的影响,这种作用称为生物效应。X线对人体的生物效应是应用X线作放射治疗的基础。另外,在实施X线检查时,对检查者与被检查者进行防护措施亦基于此理。

相关词条

 

组织学

免疫学

物理诊断学

医院药学

临床激光治疗学

胃肠动力检查学

影像学

基础护理学

康复医学

病历书写规范学

医学

急诊医学

临床基础检验学

临床营养学

临床生物化学

皮肤性病学

现代院外急救学

眼科学

基因诊断

理疗学

妇产科学

临床肝移植

胸外科学

针灸学

中医诊断学

中医儿科学

中医养生学

中医外科学

中医眼科学

中医内科学

饮食营养学

中西医结合耳鼻喉科学

中药基本理论知识

中医基础理论

中医妇科学

流行病学

病理生理学

医学统计学

心脏病学

医学心理学

预防医学

医用化学

医学遗传学基础

呼吸病学

实验动物科学

神经精神疾病诊断学

内分泌学

口腔科学

血液病学

老年学

普通外科学

泌尿外科学

参考资料

  [1] 中国医学网 http://www.library.imicams.ac.cn/sp/lww/lww0602/lww0628.html

[2] 影像专业网 http://www.chinaimaging.com/fszd3.htm

[3] 瑞金医学网 http://www.rjh.com.cn/docpage/c2867/200807/0728_2867_20860.htm 

相关百科
返回顶部
产品求购 求购