折纸数学是指对折纸艺术从数学的角度加以研究。比如,研究某个特定的纸模型的可展性(研究该模型是否可以摊平而无须把它弄破)以及使用折纸来解数学方程。
某些经典几何作图问题例如三等分角,或者将立方体的体积扩大一倍(倍立方)等问题都被证明为尺规作图不可能解决的。但是它们可以通过几个折纸步骤加以解决。一般地,折纸可以通过作图求解不超过4次的代数方程。Huzita-Hatori 公理集是这一领域的重要研究成果。
作为利用几何概念对折纸进行研究的结果,Haga定理可以用来把纸的一边精确地三等分、五等分、七等分和九等分。其他定理则允许我们从正方形折出其它图型,例如等边三角形、正六边形、正八边形以及特定的矩形比如黄金矩形和白银矩形等。
从带有折痕的平纸重新折出原来的形状这一问题已被Marshall Bern和Barry Hayes证明为NP完全问题。其它技术上的结果在《几何折纸算法》一书第二部分有更详细的介绍。
图1 图示对一张纸不断对折,其损失函数为如图1示,这里L代表纸张的最小长度,t代表纸张厚度,n代表折叠次数。这个函数是Britney Gallivan在2001年(那时候他还是个高中学生)提出的,他能把一张纸对折12次。之前人们一直以为不管多大的纸最多只能对折8次。