OADM是波分复用(WDM)光网络的关键器件之一,其功能是从传输光路中有选择地上下本地接收和发送某些波长信道,同时不影响其它波长信道的传输。也就是说,OADM在光域内实现了传统的SDH(电同步数字层次结构)分插复用器在时域内完成的功能,而且具有透明性,可以处理任何格式和速率的信号,这一点比电ADM更优越。鉴于OADM在骨干网节点及本地接入中的重要作用,国内外各大学、公司和团体都展开了比较深入的研究,有力的推动了OADM商业化进程。美国于1994年开始的MONET计划,包含基于声光可调谐滤波器结构的8波长通道OADM节点的研究。欧盟于1995年开始的ACTS计划中有COBNET(联合光干线通信网)和METON(光城域通信网)两个项目都与OADM有关,该计划对OADM器件进行了广泛而深入的研究。从商业化程度来看,目前Lucent公司已经研制出40×10Gb/s带有完善网络接口的OADM节点,并成功推向市场。其它如Alcatel,Siemens,NEC等公司也都有成熟产品推出。目前国内对OAMD的研究也取得了很大进展,在863-300项目“中国高速信息示范网”中,大唐、武邮、中兴分别完成了8路波长,任意上下的OADM节点,具有完善的网络管理接口,可根据网络需求,对OADM进行灵活配置。
(1)分波合波器加光开关阵列
这种结构的波长路由采用分波合波器,OADM的直通与上下的切换由光开关或光开关阵列来实现。这种结构的 支路与群路间的串扰由光开关决定,波长间串扰由分波合波器决定。由于分波合波器的损耗一般都比较大,所以这种结构的主要不足是 插损较大。目前分波合波器多采用体光栅、多层介质膜和阵列波导光栅等器件。从物理上看分波器反过来用就成为合波器,当然在实际设计上分波器与合波器的考虑还是略有不同的,下面从构成分波器的角度对这三种器件分别加以简要介绍。 多层介质膜 多个FP腔级联构成多层介质膜,根据每个FP腔的透过波长不同来实现解 复用功能,这是多层介质膜的工作原理。其优点是顶带平坦,波长响应尖锐,温度稳定性好,损耗低,对信号的 偏振性不敏感,在商用系统中广泛应用。但由于它要通过透镜与光纤相连,因而光纤耦合需要精确校准,另外其稳定性也受到环境温度的影响,因此在生产与复制过程中难以保证通带中心波长的精确控制。 体光栅 体光栅属于角色散型器件。 衍射光栅在玻璃 衬底上沉积 环氧树脂,在其上制造光栅线,构成反射型 闪耀光栅。入射光照射到光栅上后,由于光栅的角色散作用,不同波长的光以不同角度反射,然后经透镜汇聚到不同的输出光纤,从而完成波长选择作用。由于体光栅是体型装置,不易制造,价格昂贵。 阵列波导光栅 将光从普通的N×N星型 耦合器的任何一处输入都将传到所有输出端,没有任何波长选择性。而在阵列波导光栅(AWG)中,任何工作频段内的输入光都将从一个确定的端口输出,这样就可以实现复用和解复用的功能。与目前常用的多层介质膜相比,AWG的特点是结构紧凑、价格便宜、信道间隔更窄,适用于多信道的大型节点。 AWG需要解决的问题有:偏振的影响、温度的影响、光纤的连接与耦合。
(2)光纤光栅
光纤布拉格光栅(FBG)是使用紫外光干涉在光纤中形成周期性的折射率变化(光栅)制成的光器件。其优点是可直接写入通信光纤,成本低,生产重复性高,可批量生产,易于与各种光纤系统连接,连接损耗小,波长、带宽、色散可灵活控制。存在的主要问题是受外界环境的影响较大,如温度、应变等因素的微小变化都会导致中心波长的漂移。 干线WDM信号经开关选路,每路的光栅对准一个波长,被光栅反射的波长经 环行器下路到本地,其他的干线信号波长通过光栅经环行器跟本地节点的上路信号波长合波,继续在干线上向前传输。这个方案可以根据开关和光栅来任意选择上下话路的波长,使网络资源的配置具有较大的灵活性。由于每个FBG只能下一路波长信道,由于生产成本的原因,这种结构只能适用于上下话路不多的小型节点。