电子亲合能

目录导航

定义

在一般化学与原子物理学中,电子亲合能(或电子亲和势电子亲和力,electron affinity,Eea)的定义是,将使一个电子脱离一个气态的离子或分子所需耗费,或是释出的能量。

  • X(g)→ X(g)+ eΔH=Eea

在固体物理学之中,对于一表面的电子亲合能定义不同。

其他定义

除以上定义(定义一)之外,电子亲合能还有两种定义方式:

定义二和定义一等价,是将一物质的原子或分子获得一个电子,变成 -1 价离子时放出的能量。此定义下的电子亲合能和定义一相同。不过此定义下,放出能量时电子亲和能为正,吸收能量时电子亲和能为负,正负号的使用和一般热力学的定义恰好相反。

定义三,是将一物质的原子或分子获得一个电子,变成 -1 价离子时的能量变化。放热时数值为负,吸热时数值为正。定义三的正负号使用和一般热力学的定义相同。但其电子亲合能恰为定义一的负值。

本文采用定义一的电子亲合能。

元素的电子亲合能

并非所有的元素的电子亲合能均为正,电子亲合能为正表示其 -1 价的离子需吸收能量才能变为电中性的原子(早期的教科书写有些元素,例如惰性气体,其电子亲合能为负,此说法并未被现代的化学家接受)。若其阴离子较不稳定,容易变成原子,则其电子亲合能较低。元素中氯的电子亲合能最高,汞和惰气等元素的电子亲合能都接近零。一般来说,非金属的电子亲合能都比金属高。

总的来说,同一周期从左至右,价壳层电子递增,使得原子稳定性上升,原子半径递减,对电子的吸引能力渐强,因而电子亲合能递增;同族元素从上到下,因原子半径的增大,而且总电子数增加,原子稳定性下降,元素电负性值递减。 实际上,随核电荷数递增或同族元素从上到下,电子亲和能的变化并不单调。

列表及参考资料

元素 电子亲合能
(kJ/mol)
参考资料
72.77 Pekeris (1962). Lykke, Murray & Lineberger (1991).
59.62 Hotop & Lineberger (1985). Dellwo et al. (1992). Haeffler et al. (1996a).
26.99 Scheer, Bilodeau & Haugen (1998).
121.78 Scheer et al. (1998a).
141.004 Hotop & Lineberger (1985). Blondel (1995). Valli, Blondel & Delsart (1999).
328.165 Blondel et al. (1989). Blondel, Delsart & Goldfarb (2001).
52.87 Hotop & Lineberger (1985)
41.86 Scheer et al. (1998b)
134.07 Scheer et al. (1998a). Blondel, Delsart & Goldfarb (2001).
72.03 Hotop & Lineberger (1985).
0.00 Periodic Table of the Elements(2017)
200.410 Blondel (1995).
349 Moore (1970).
48.38 Slater et al. (1978). Andersson et al. (2000).
2.37 Petrunin et al. (1996).
18(2) Feigerle, Herman & Lineberger (1981).
8.4(7) Ilin, Sakharov & Serenkov (1987).
51 Hotop & Lineberger (1985).
65.2 Bilodeau, Scheer & Haugen (1998).
14.6(3) Leopold & Lineberger (1986).
64.0 Scheer et al. (1998c).
111.6 Scheer et al. (1998c).
119.24 Bilodeau, Scheer & Haugen (1998).
41(3) Williams et al. (1998a).
118.94 Scheer et al. (1998a).
78.5(7) Lippa et al. (1998).
194.97 Hotop & Lineberger (1985). Mansour et al. (1988).
342.54 Blondel et al. (1989).
46.89 Frey, Breyer & Hotop (1978).
5.02 Andersen et al. (1997).
30 Feigerle, Herman & Lineberger (1981).
41 Hotop & Lineberger (1985).
86(2) Hotop & Lineberger (1985).
72.3 Bilodeau, Scheer & Haugen (1998).
101.0 Norquist et al. (1999).
110.3 Scheer et al. (1998c).
54.24 Scheer et al. (1998c).
125.86 Biladeau, Scheer & Haugen (1998).
39 Williams et al. (1998b).
107.30 Scheer et al. (1998a).
101.06 Scheer, Haugen & Beck (1997).
190.16 Hotop & Lineberger (1985). Haeffler et al. (1996b).
295 Moore (1970).
45.51 Slater et al. (1978). Scheer et al. (1998d).
13.95 Petrunin et al. (1995).
45(2) Covington et al. (1998).
92(2) Davis & Thompson (2002a).
99(2) Davis & Thompson (2002b).
33 Davis & Thompson (2001).
31 Hotop & Lineberger (1985).
79 Hotop & Lineberger (1985). Bengali et al. (1992).
104.0 Biladeau & Haugen (2000).
150.9 Biladeau et al. (1999).
205.04 Biladeau et al. (1999).
222.75 Hotop & Lineberger (1985).
36 Carpenter, Covington & Thompson (2000).
35 Hotop & Lineberger (1985).
90.92 Biladeau & Haugen (2001).

分子的电子亲合能

元素 电子亲合能
(kJ/mol)
参考资料
72.77 Pekeris (1962). Lykke, Murray & Lineberger (1991).
59.62 Hotop & Lineberger (1985). Dellwo et al. (1992). Haeffler et al. (1996a).
26.99 Scheer, Bilodeau & Haugen (1998).
121.78 Scheer et al. (1998a).
141.004 Hotop & Lineberger (1985). Blondel (1995). Valli, Blondel & Delsart (1999).
328.165 Blondel et al. (1989). Blondel, Delsart & Goldfarb (2001).
52.87 Hotop & Lineberger (1985)
41.86 Scheer et al. (1998b)
134.07 Scheer et al. (1998a). Blondel, Delsart & Goldfarb (2001).
72.03 Hotop & Lineberger (1985).
0.00 Periodic Table of the Elements(2017)
200.410 Blondel (1995).
349 Moore (1970).
48.38 Slater et al. (1978). Andersson et al. (2000).
2.37 Petrunin et al. (1996).
18(2) Feigerle, Herman & Lineberger (1981).
8.4(7) Ilin, Sakharov & Serenkov (1987).
51 Hotop & Lineberger (1985).
65.2 Bilodeau, Scheer & Haugen (1998).
14.6(3) Leopold & Lineberger (1986).
64.0 Scheer et al. (1998c).
111.6 Scheer et al. (1998c).
119.24 Bilodeau, Scheer & Haugen (1998).
41(3) Williams et al. (1998a).
118.94 Scheer et al. (1998a).
78.5(7) Lippa et al. (1998).
194.97 Hotop & Lineberger (1985). Mansour et al. (1988).
342.54 Blondel et al. (1989).
46.89 Frey, Breyer & Hotop (1978).
5.02 Andersen et al. (1997).
30 Feigerle, Herman & Lineberger (1981).
41 Hotop & Lineberger (1985).
86(2) Hotop & Lineberger (1985).
72.3 Bilodeau, Scheer & Haugen (1998).
101.0 Norquist et al. (1999).
110.3 Scheer et al. (1998c).
54.24 Scheer et al. (1998c).
125.86 Biladeau, Scheer & Haugen (1998).
39 Williams et al. (1998b).
107.30 Scheer et al. (1998a).
101.06 Scheer, Haugen & Beck (1997).
190.16 Hotop & Lineberger (1985). Haeffler et al. (1996b).
295 Moore (1970).
45.51 Slater et al. (1978). Scheer et al. (1998d).
13.95 Petrunin et al. (1995).
45(2) Covington et al. (1998).
92(2) Davis & Thompson (2002a).
99(2) Davis & Thompson (2002b).
33 Davis & Thompson (2001).
31 Hotop & Lineberger (1985).
79 Hotop & Lineberger (1985). Bengali et al. (1992).
104.0 Biladeau & Haugen (2000).
150.9 Biladeau et al. (1999).
205.04 Biladeau et al. (1999).
222.75 Hotop & Lineberger (1985).
36 Carpenter, Covington & Thompson (2000).
35 Hotop & Lineberger (1985).
90.92 Biladeau & Haugen (2001).

列表及参考资料

电子亲合能Eea的定义也可以延伸到分子。如苯和萘的电子亲合能为负值,而蒽、菲、芘的电子亲合能为正值。电脑模拟实验证实六氰基苯 C6(CN)6的电子亲合能较富勒烯要高。

参见

分子 电子亲合能
(kJ/mol)
参考资料
双原子分子
溴(分子) 244 Janousek & Brauman (1979)
氯气 227 Janousek & Brauman (1979)
氟气 297 Janousek & Brauman (1979)
碘(分子) 246 Janousek & Brauman (1979)
氧气 43 CRC Handbook
溴化碘 251 Janousek & Brauman (1979)
氯化锂 59 Janousek & Brauman (1979)
一氧化氮 2 Janousek & Brauman (1979)
三原子分子
二氧化氮 222 Janousek & Brauman (1979)
二氧化硫 105 Janousek & Brauman (1979)
多原子分子
−110 Janousek & Brauman (1979)
1,4-苯二酮 129 CRC Handbook
三氟化硼 255 CRC Handbook
硝酸 59 Janousek & Brauman (1979)
硝基甲烷 38 Janousek & Brauman (1979)
三氯化磷 134 Janousek & Brauman (1979)
六氟化硫 138 CRC Handbook
四氰乙烯 278 CRC Handbook
六氟化钨 264 CRC Handbook
六氟化铀 280 CRC Handbook

相关百科
返回顶部
产品求购 求购