交叉学科研究中心主要研究方向: 1)强关联电子系统与高温超导 2)介观输运与动力学控制 3)密度矩阵重正化群算法与应用 4)量子信息与量子光学
罗洪刚中心开展的主要工作: 1)铜基高温超导体的微观模型研究(实验与理论的分析计算,很辛苦的工作且需要长期的积累)。 2)Kondo问题研究(自旋的屏蔽问题,曾或将在很多系统中观察到。实验现象丰富,但真正的理论进展并不容易)。 3)量子化学密度矩阵重正化群算法研究和应用(一项从2004年就开始的工作,...)。 4)量子退相干和纠缠动力学(量子信息,量子计算实现之前必须解决的问题 ... )。 5)非自治(或时间相关)量子系统的动力学控制(好像跟现代技术的发展与认识自然和改造自然的理念有关)。
2018年1月18日,政协甘肃省第十一届委员会常务委员会第二十二次会议,当选政协甘肃省第十二届委员会委员。[1]
副教授:安均鸿(硕士生导师),房铁峰 博士研究生:丁彩英,李林 硕士研究生:童庆军,成娟娟,张芳,程晨,阿继凯
罗洪刚1. Hong-Gangluo, Dun Zhao, and Xu-Gang He, Exactly controllable transmission of nonautonomous optical solitons, PHYSICAL REVIEW A 79, 063802 (2009);2. Xu-Gang He, Dun Zhao, Lin Li, and Hong-Gang Luo, Engineering integrable nonautonomous nonlinear Schrödinger equations, PHYSICAL REVIEW E 79, 056610 (2009);3. Xing-Hua Hu, Xiao-Fei Zhang, Dun Zhao, Hong-Gang Luo, and W. M. Liu, Dynamics and modulation of ring dark solitons in two-dimensional Bose-Einstein condensates with tunable interaction, PHYSICAL REVIEW A 79, 023619 (2009);4. X.-G. He, D. Zhao, and H.-G. Luo, Transformation from the nonautonomous to standard NLS equations, Eur. Phys. J. D 53, 213 (2009) ;5. Xing-Hua Hu, Xiao-Fei Zhang, Dun Zhao, Hong-Gang Luo, and W. M. Liu, Dynamics and modulation of ring dark solitons in two-dimensional Bose-Einstein condensates with tunable interaction, Phys. Rev. A 79, 023619 (2009);6. T. Xiang, H. G. Luo, D. H. Lu, K. M. Shen, and Z. X. Shen, Intrinsic electron and hole bands in electron-doped cuprate superconductors, Phys. Rev. B 79, 014524 (2009);7. Tie-Feng Fang, Wei Zuo, and Hong-Gang Luo, Kondo Effect in Carbon Nanotube Quantum Dots with Spin-Orbit Coupling, Phys. Rev. Lett. 101, 246805 (2008).8. Dun Zhao, Hong-Gang Luo, Hua-Yue Chai, Integrability of the Gross–Pitaevskii equation with Feshbach resonance management, Physics Letters A 372 (2008) 5644–5650.9. ZHAO Dun, WANG Shun-Jin, and LUO Hong-Gang, Differential Representations of SO(4) Dynamical Group, Commun. Theor. Phys. (Beijing, China) 50 (2008) pp. 63–68.10. H. G. Luo, Y. H. Su, and T. Xiang, Scaling analysis of normal-state properties of high-temperature superconductors, Phys. Rev. B 77, 014529 (2008).11. Dun Zhao, S. J. Wang, and H. G. Luo, The calculation of differential representations of dynamical Lorentz group SO(3,1) as an example, Acta Mathematica Scientia Series 27 A(5): 819-829 (2007).12. J. H. An, S. J. Wang, and H. G. Luo,entanglementdynamics ofQubits in a common environment, Physica A 382, 753-764 (2007).13. C. S. Liu, H. G. Luo, and W. C. Wu, Patter formation of indirect excitons in coupled quantum wells, J. Phys.: Condens. Matter 18, 9659-9668 (2006).14. C. S. Liu, H. G. Luo, W. C. Wu, and T. Xiang, Two-band model of Raman scattering on electron-doped high-Tc superconductors, Phys. Rev. B 73, 174517 (2006).15. Y. H. Su, H. G. Luo, and T. Xiang, Universal scaling behavior of the c-axis resistivity of high-temperature superconductors, Phys. Rev. B 73, 134510 (2006).16. H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, Luo et al. reply, Phys. Rev. Lett. 96, 019702 (2006).17. J. H. An, S. J. Wang, and H. G. Luo, Constraint dynamics and tracking control to coherence of a thermal dissipative qubit, Chin. Phys. Lett. 22, 3009-3012 (2005).18. W. Q. Ran, J. Chang, H. T. Lu, Y. H. Su, H. G. Luo, and T. Xiang, Geometrical structure effect on the localization length of carbon nanotubes, Chin. Phys. Lett. 22, 2375-2378 (2005).19. H. T. Lu, Y. H. Su, L. Q. Sun, J. Chang, C. S. Liu, H. G. Luo, and T. Xiang, Thermodynamic properties of tetrameric bond-alternating spin chains, Phy. Rev. B 71, 144426 (2005).20. Jun-Hong An, Shun-Jin Wang, and Hong-Gang Luo, Entanglement production and decoherence-free subspace of two single-mode cavities embedded in a common environment, J. Phys. A: Math. Gen. 38, 3579–3593 (2005).21. H. G. Luo and T. Xiang, Superfluid Response in Electron-Doped Cuprate Superconductors, Phys. Rev. Lett. 94, 027001 (2005).22. Dun Zhao, Hong-Gang Luo, Shun-Jin Wang, Wei Zuo, A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schrodinger equation, Chaos, Solitons and Fractals, 24, 533-547 (2005).23. Jun-Hong An, Shun-JinWang, Hong-Gang Luo, and Cheng-Long Jia, A two-level atom coupled to a controllable squeezed vacuum field reservoir, J. Opt. B: Quantum Semiclass. Opt. 6, 510-516 (2004).24. J. Chang, Y. H. Su, H. G. Luo, H. T. Lu, and T. Xiang, Effect ofimpurityresonance states on the NMR spectra of high-Tc cuprates, Phys. Rev. B 70, 212507 (2004).25. H.G. Luo, T. Xiang, X.Q. Wang, Z. B. Su, and L. Yu, Fano resonance in the Anderson impurity systems, Phys. Rev. Lett. 92, 256602 (2004).26. Shun-Jin Wang, Cheng-Long Jia, Jun-Hong An, and Hong-Gang Luo, “Spin switch and qubit register from a spin particle controlled by a time-dependent magnetic field”, Chin. Phys. Lett. 21, 778 (2004).27. Cheng-Long Jia, Shun-Jin Wang, Hong-Gang Luo, and Jun-Hong An, “Electron spin transport through an Aharonov-Bohm ring – a spin switch”, J. Phys.: Condens. Matter 16, 2043 (2004).28. Jun-Hong An, Shun-Jin Wang, Hong-Gang Luo, Cheng-Long Jia , “Production of squeezed state of single mode cavity field by the coupling of squeezed vacuum field reservoir in nonautonomous case”, Chin. Phys. Lett. 21 , 1 (2004).29. Y. H. Su, J. Chang, H. T. Lu, H. G. Luo, and T. Xiang, “Bilayersplittingspectroscopy of double-layer high Tc cuprates”, Phys. Rev. B 68, 212501 (2003).30. H. G. Luo, T. Xiang, and X. Q. Wang, “Comment on “Time-Dependent Density-Matrix Renormalization Group: A Systematic Method for the Study of Quantum Many-Body Out-of-Equilibrium Systems””, Phys. Rev. Lett. 91, 049701(2003).31. S. J. Wang, C. L. Jia, D. Zhao, H. G. Luo, and J. H. An, “Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate”, Phys. Rev. A 68, 015601 (2003).32. S. J. Wang, J. H. An, H. G. Luo, and C. L. Jia, “Dynamical symmetry and analytical solutions of the non-autonomous quantum master equation of the dissipative two-level system: decoherence of the quantum register”, J. Phys. A: Math. Gen. 36, 829 (2003).33. H. G. Luo, S. J. Wang, and C. L. Jia, “Magnetic flux effects in an Aharonov-Bohm ring with aninsertedquantum dot”, Phys. Rev. B 66, 235311 (2002).34. H. G. Luo, C. L. Jia, S. J. Wang, and W. Zuo, “Nonlocal effects in the metal-insulator transition beyond the Hubbard III approximation”, Phys. Rev. B 65, 075108 (2002).35. S. J. Wang, D. Zhao, H. G. Luo, L. X. Cen, and C. L. Jia, “Exact solution to the von Neumann equation of the quantum characteristic function of the two-level Jaynes-Cummings model”, Phys. Rev. A 64, 052102 (2001).36. H. G. Luo and S. J. Wang, “Equation-of-motion approach to theanharmonicoscillator”, Phys. Rev. B 62, 5341 (2000).37. H. G. Luo and S. J. Wang, “Specific heat of the periodic Anderson model at finite U”, Phys. Rev. B 62, 1485 (2000).38. H. G. Luo and S. J. Wang, “Equation of motion approach to the two-dimensional Hubbard model”, Phys, Rev. B 61, 13418 (2000).39. H. G. Luo and S. J. Wang, “Higher-order correlation effects to the solution of the Hubbard model”, Phys. Rev. B 61, 5158 (2000).40. L. Yang, K. Q. Yang, and H. G. Luo, “Complex version of KdV equation and its exact solution”, Phys. Lett. A 267, 231 (2000).41. H. G. Luo and S. J. Wang, “Moment-conserving decoupling approach to the many-body systems”, Phys. Rev. B 60, 15480 (1999).42. H. G. Luo, W. Cassing, and S. J. Wang, “Damping of collective nuclear motion and thermodynamic properties of nuclei beyond mean field”, Nucl. Phys. A 652, 164(1999).43. H. G. Luo, Z. J. Ying, and S. J. Wang, “Equation of motion approach to the solution of the Anderson model”, Phys. Rev. B 59, 9710 (1999).44. S. J. Wang, H. G. Luo, and W. Cassing, “Microscopic study of the giant resonance of the hot nuclei”, HEP & NP (in chinese) 24(10): 955 (2000).45. H. G. Luo and K. Q. Yang, “Spectral methods solution of a class of nonlinear equations”, Journal of Lanzhou University (Natural Science) (in chinese) V31 (3), 58 (1995).46. K. Q. Yang and H. G. Luo, “Exact solution of a class of nonlinear equations”, Journal of Lanzhou University (Natural Science) (in chinese) V31 (1), 35 (1995).