用电能加速工质(工作介质)形成高速射流而产生推力的火箭发动机。它与化学火箭发动机不同,能源和工质是分开的。电能由飞行器提供,一般由太阳能、核能或化学能经转换装置得到。工质常用氢、氮、氩或碱金属(铯、汞、铷、锂等)的蒸气。电火箭发动机比冲高、寿命长(可起动上万次,累计工作上万小时),但推力小于100牛(10公斤力),适用于航天器的姿态控制、位置保持和星际航行等。1906年美国R.H.戈达德提出用电能加速带电粒子产生推力的设想,并于1916年进行了初步试验。电火箭发动机的推力很小,不可能用它从地面32313133353236313431303231363533e4b893e5b19e31333361303132发射任何有效载荷,因此一直未能进入实用阶段。直到1957年第一颗人造地球卫星上天以后,电火箭发动机的研究才逐渐引起重视。1960年以后,苏联、美国研制出各种电火箭发动机,并进行了多次空间飞行试验。中国和其他一些国家也相继开展了电火箭发动机的研究和制造。已研制成功 100多个不同类型、不同尺寸的发动机,使电火箭发动机进入了实用阶段。电火箭发动机由电源、电源交换器、电源调节器、工质供应系统和电推力器等组成。电源和电源交换器供给电能;电源调节器按预定程序起动发动机,并不断调整电推力器的各种参数,使发动机始终处于规定的工作状态。工质供应系统贮存和输送工质。电推力器将电能转换成工质的动能,使其高速喷出产生推力。电火箭发动机按工质加速方式可分为三种类型:电热火箭发动机、静电火箭发动机和电磁火箭发动机。电热火箭发动机利用电能加热工质(如肼、氨、氢等)使其气化,经喷管膨胀加速、喷出产生推力。电热火箭发动机按加热方式又可分为电阻加热式和电弧加热式两种。电热火箭发动机比冲为700~1000秒,推力为0.01~0.1牛(约10-3~10-2公斤力)。静电火箭发动机这种发动机的工质(如汞、铯、氢等)从贮箱经过电离室电离成离子,在引出电极的静电场力作用下加速形成射束。离子射束与中和器发射的电子耦合形成中性的高速束流,喷射而产生推力。推力通常在(0.5~25)×10-5牛之间,比冲达 8500~20000秒。电磁火箭发动机利用电磁场对载流等离子体产生洛伦兹力的原理,使处于中性等离子状态的工作介质加速以产生推力。其比冲为5000~25000秒。