移动通信中信号随接受机与发射机之间的距离不断变化即产生了衰落。其中,信号强度曲线的中直呈现慢速变化,称为慢衰落;曲线的瞬时值呈快速变化,称快衰落。可见快衰落与慢衰落并不是两个独立的衰落(虽然他们的产生原因不同),快衰落反映的是瞬时值,慢衰落反映的是瞬时值加权平均后的中值。
引起快衰落的原因:
(1)多径效应。①时延扩展:多径效应(同一信号的不同分量到达的时间不同)引起的接受信号脉冲宽度扩展的现象称为时延扩展。时延扩展(多径信号最快和最慢的时间差)小于码元周期可以避免码间串扰,超过一个码元周期(WCDMA中一个码片)需要用分集接受,均衡算法来接受。②相关带宽:相关带宽内各频率分量的衰落时一致的也叫相关的,不会失真。载波宽度大于相关带宽就会引起频率选择性衰了使接收信号失真。
(2)多普勒效应。f频移 = V相对速度/(C光速/f电磁波频率)*cosa(入射电磁波与移动方向夹角)。多普勒效应引起时间选择性衰落,我的理解是由于相对速度的变化引起频移度也随之变化这是即使没有多径信号,接受到的同一路信号的载频范围随时间不断变化引起时间选择性衰落。交织编码可以克服时间选择性衰落。时间选择性衰落用T相关时间来表示=1/相关频率。例如某移动台速度为540公里/小时那么它的最大频移为1KH相关时间就是1毫秒想要克服这样速度的快衰落就要有1.5倍于衰落变化频率的功控即1500Hz快速功控。
快衰落细分为:
时间选择性衰落(快速移动在频域上产生多普勒效应而引起频率扩散)
空间选择性衰落(不同的地点、不同的传输路径衰落特性不一样)
频率选择性衰落(不同的频率衰落特性不一样,引起时延扩散)。
慢衰落:它是由于在电波传输路径上受到建筑物或山丘等的阻挡所产生的阴影效应而产生的损耗。它反映了中等范围内数百波长量级接收电平的均值变化而产生的损耗,一般遵从对数正态分布。
慢衰落产生的原因:
(1)路径损耗,这是慢衰落的主要原因。
(2)障碍物阻挡电磁波产生的阴影区,因此慢衰落也被称为阴影衰落。
(3)天气变化、障碍物和移动台的相对速度、电磁波的工作频率等有关。
大范围衰落主要会导致整体信号的电平衰落。路径衰减极其依赖于距离。它对设备的影响是,由于降低了
快衰落的影响
SNR
多径和多普勒效应导致的小范围衰落可能对通信的破坏力最强。频率选择性衰落会导致码间干扰(ISI),使得精确地理解收到的符号变得更加困难。平衰落会使SNR恶化,因为反射会导致矢量成分互相抵消。快衰落会使发送的基带数据脉冲失真,可能会导致锁相环同步问题。慢衰落也会降低SNR。SNR的降低要求无线设备的设计人员在确定链路要求时要增加“衰落余量“;信号功率必须足够强,或者接收机的灵敏度要足够高,以便在衰落情形下能够正常工作。
那么,如何降低快衰落的影响呢?
只有在没有信道损伤时,才能实现理想的无线链路性能。但是加性白色高斯噪声(AWGN)的存在则会使得无线信道不可能完全没有干扰。不过,在设计无线设备时可以采用许多技术,来降低衰落的影响。这些技术降低了最坏情况下的衰落曲线的误码概率,使其更接近最好情况下的AWGN曲线。不同形式的衰落对误码率有不同的影响。频率选择性衰落和快衰落会明显影响误码率,而平衰落和慢衰落对误码率的影响较小。在设计可以容忍衰落对信号恶化的无线链路时,确定信道中的衰落类型非常重要。然后,可以选择信息速率,减少能够避免的误码。
由于符号频率与符号周期呈倒数的关系,因此改变信号速率以补偿频率选择性衰落也会改变其在衰落速度方面的性能。为避免频率选择性衰落,传输速率应低于信道的相干带宽。换句话说,频率选择性衰落确定了信号带宽的上限,快衰落则确定了信号带宽的下限。
均衡是一种常用技术,它用来消除频率选择性衰落导致的ISI。这个过程是调用一个脉冲响应与传播信道相反的滤波器。因此,传输通道与接收滤波器相结合,产生平坦的线性响应。例如,GSM采用自适应均衡技术,来缓和失真。
CDMA技术使用Rake接收机减轻ISI的影响。Rake接收机使用专用滤波器,检测展宽信号里的成分,将这些成分收集起来,并将它们相干地叠加起来(对早到路径采用比晚到路径更多的延时)。
还可以使用交织技术和编码技术,降低准确检测信号所要求的Eb/No(能噪比)。编码技术通过在正交码道上发送多个信号拷贝,提供了冗余性。交织技术通过把误码分布到不同的时间,在链路中增加了稳定性,从而避免了大量连续数据丢失现象的发生,而这种现象可能会切断无线链路。
某些传输技术具备的信号特性,可以避免衰落最常见的影响。例如,超宽带传输技术,它传送的脉冲周期如此之短,以致其不会受到信道时延展宽的影响。正交频分复用技术通过把载波信号划分成信息速率较低的子载波,来避免频率选择性衰落。
衰落以某种方式对通过无线信道传播的信号进行阻碍。为设计能够容忍这种损伤的设备,重要的一点是需
快衰落的测试
数学 数学 电磁波
通过在与距离相关的平均路径衰减上叠加对数正态分布的信号波动,可以用数学方式仿真大范围衰落。对大范围衰落,最精确的信道仿真方程来源于经验公式,这些经验公式来自在特定的市区进行测量并获得的结果。
当发射机和接收机之间没有很强的视距传播路径时,瑞利分布是一个很好的信道传播模型。它可以适当地表示市区中的信道条件,其中大楼会阻碍视距传播路径,而且信号被各种物体反射后,在接收端时间上被展宽。在时域中,瑞利衰落在40 dB或更深的槽之间有不高于10 dB的周期峰值 (深度衰落) 。
测试无线系统(包括移动台和基站)在衰落情形下是否能够成功地收发数据,是检测过程的重要组成部分。无线标准一般会规定广泛而详细的衰落测试。当前,为实现衰落测试而采用的信道仿真方法是一个极具挑战性的过程。
当前的信道仿真方法从RF信号开始,到RF信号结束需要仿真衰落的测试信号被下变频以及数字化。然后在数字信号中结合衰落曲线,其结果再上变频回到RF。最后增加噪声。注意,AWGN独立于多径效应,因此必须单独增加。
这种方法包括两个过程:转换损耗和噪声校准。这两个过程导致效率低下、准确性差。当仿真信号转换成数字信号或数字信号转换成仿真信号时,测试设备(而不是信道或被测设备)会引入误差。这种转换损耗增加了测量不确定性。
确定要增加相应噪声的数量,以获得某个载噪比(C/N)是一个困难的过程。要求必须在仿真衰落后,在信号中增加AWGN,这样它不会被衰减掉而偏离希望的信号电平。但是,增加这种噪声使总功率电平偏离了衰落后的总功率电平,同时改变了C/N比率。因此必需在衰落后计算载波功率,以确定输入信号功率一定时要增加的相应噪声电平,这是一个复杂、耗时、代价高昂的过程。