正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用来表示。
正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。
高边长边长
宽边长边长
对角线长
其中R为外接圆半径。
边长为t的正凸五边形面积可以将之分割成5个等腰三角形计算:
正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年,已知有15种凸五边形镶嵌平面,还未知道是否尚有其他的凸五边形。
正多边形的面积公式为:
其中,P是周长、r是边心距。正五边形的P和r可由三角函数计算:
其中,t是正五边形的边长。
正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。
其中,r为内切圆半径与边心距相同、t为正五边形边长。
正五边形里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被近一步讨论。。
先利用单位圆决定五边形的半径。C为单位圆圆心,M是圆C半径的中点。D是位于垂直于MC的另外一条半径的圆周上。作角CMD的角平分线,令Q为角CMD的角平分线与CD的交点。作过Q平行于MC的直线,令之与圆C相交的交点为P,则DP为正五边形的边长。
这条边的长度可以利用圆下方的两个直角三角形DCM和QCM。利用勾股定理,较大的三角形斜边为。小三角形其中一股h可由半角公式求得:
其中,角ϕ可由大三角形求得,其值为:
由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长a可借由再带一次勾股定理得:
欲求出五边形边长s可透过左侧的三角形,由勾股定理得:
使用圆规与直尺建构出正五边形。
五边形边长s为:
得到了正确的结果因此此种构造正五边形的方法是有效的。
约前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。[2]
正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。
(1)已知边长作正五边形的近似画法[3]
①作线段AB等于定长l,并分别以A,B为圆心,已知长l为半径画弧与AB的中垂线交于K。
②取AB的2/3长度,沿着中垂线向上取C点,使CK=2/3AB。
③以点C为圆心,已知边长AB为半径画弧,分别与前两弧相交于M,N。
④顺次连接A,B,N,C,M各点即近似作得所要求的正五边形。[4]
(2)民间口诀画正五边形
口诀介绍:“九五顶五九,八五两边分”。
画法:
①画线段AB=20mm。
②作线段AB的垂直平分线l,垂足为G。
③在l上连续截取GH,HD,使 GH=9.5/5*10mm=19mm,HD=5.9/5*10mm=11.8mm。
④过H作EC⊥HG,在EC上截取HE=HC=8/5*10mm=16mm。
⑤连结DE,EA,AB,BC,CD。
五边形ABCDE就是边长为20mm的近似正五边形。
图1.正五边形-几何画板理论依据:cos36°=(1+√5)/4
1. 在平面内作一圆,圆心为O;
2. 在圆O上取一点A,连接AO并延长交圆O于另一点B;【假令|AB|=4】
3. 过点O作CD⊥AB,交圆O于C、D两点;【此时|CD|=4】
4. 作OB垂直平分线MN,交OB于E点,交圆O于M,N【此时|OE|=|BE|=1】
5. 以点E为圆心,EC长为半径作弧,交BO延长线于点F;
【此时|EC|=|EF|=√5】
6. 以点B为圆心,BF长为半径作弧,交圆O分别于G、H两点;【此时|BF|=|EF|+|BE|=1+√5】
【此时可知cos∠ABG=(|EF|+|BE|)/|AB|=(1+√5)/4=cos36°】
【而∠AOG=2∠ABG=72°=360°/5(直径所对的圆周角)】
【此时便得到了圆周上的五等分点的其中两个】
7. 以点G为圆心,GA长为半径作弧,交圆O于P点;
8. 以点H为圆心,HA长为半径作弧,交圆O于Q点;
9. 连接AG、GP、PQ、QH、HA,则五边形AGPQH为正五边形。
圆内接正五边形指内接于圆的正五边形。圆内接正五边形的每一条边相等(即圆的每一条弦相等),每个角均为108°,每个角在圆内所对的优弧相等。
因为五边形的内角和可看为3个三角形的内角和,所以,3×180°=540°
据上一条“正五边形的内角和求法”可知道,正五边形的内角和为540°。
往下拓展:因为正五边形的五个角均相等,且五边形的内角和为540°;
所以正五边形的每个内角均为540°÷5=108°