仅有的五种正多面体,即是正四面体、正六面体、正八面体、正十二面体和正二十面体。
所谓正多面体,当然要首先保证它是一个多面体,而它的特殊之处就在于它的每一个面都是正多边形,而且各个面的正多边形都是全等的。也就是说,将正多面体的各个面剪下来,它们可以完全重合。虽然多面体的家族很庞大.可是正多面体的成员却很少,仅有五个。
这几个正多面体分别是由什么组成的呢?
正四面体是由四个全等的等边三角形组成的;正六面体是由六个全等的正方形组成的;正八面体是由八个全等的等边三角形组成的;正十二面体是由十二个全等的正五边形组成的;正二十面体是由二十个全等的等边三角形组成的。[1]
正多面体的各种参数如下表所示。
类型 | 面数 | 棱数 | 顶点数 | 每面边数 | 每顶点棱数 |
正4面体 | 4 | 6 | 4 | 3 | 3 |
正6面体 | 6 | 12 | 8 | 4 | 3 |
正8面体 | 8 | 12 | 6 | 3 | 4 |
正12面体 | 12 | 30 | 20 | 5 | 3 |
正20面体 | 20 | 30 | 12 | 3 | 5 |
类型 | 面数 | 棱数 | 顶点数 | 每面边数 | 每顶点棱数 |
正4面体 | 4 | 6 | 4 | 3 | 3 |
正6面体 | 6 | 12 | 8 | 4 | 3 |
正8面体 | 8 | 12 | 6 | 3 | 4 |
正12面体 | 12 | 30 | 20 | 5 | 3 |
正20面体 | 20 | 30 | 12 | 3 | 5 |
只有五种多面体是正多面体。
证明如下:设正多面体每个顶点有m条棱,每个面都是正n边形,多面体的顶点数是V,面数是F,棱数是E。因为两个相邻面有一公共棱,所以
因为两个相邻顶点有一公共棱,所以
又因多面体的Euler定理,得V+F-E=2,从上面三式可得
要使得上面的式子成立,必须满足2m+2n-mn>0,即1/m+1/n>1/2。因为m≥3,所以
于是n<6。
当n=3时,m<6,所以m能取的值是3、4、5;
当n=4时,m<4,所以m能取的值是3;
当n=5时,m<10/3,所以m能取的值是3。
当n=3,m=3时,V=4,F=4,E=6;当n=3,m=4时,V=6,F=8,E=12;当n=3,m=5时,V=12,F=20,E=30;当n=4,m=3时,V=8,F=6,E=12;当n=5,m=3时,V=20,F=12,E=30;所以正多面体只有上述五种。[2]