收敛数列

收敛数列

目录导航

性质

唯一性

思维导图思维导图如果数列Xn收敛,每个收敛的数列只有一个极限。

有界性

定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。

定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界

,不一定收敛;数列发散不一定无界。

数列有界是数列收敛的必要条件,但不是充分条件

保号性

如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。

相互关系

收敛数列收敛数列(3)收敛数列与其子数列间的关系

子数列也是收敛数列且极限为a恒有|Xn|<M

若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。

如果数列{}收敛于a,那么它的任一子数列也收敛于a。

相关百科
返回顶部
产品求购 求购